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Introduction

The idea of Bose-Einstein condensation (BEC) dates back to 1925 when A. Einstein,
based on a work of S.N. Bose about statistical description of the quanta of light,
predicted the occurrence of a phase transition in a gas of noninteracting atoms.
This phase transition is connected with the condensation of bosonic atoms that
occupy the lowest energy state. This occurs due to the quantum statistical effects.

It took about 70 years to verify Einsteins prediction. The experimental search
for BEC started in the early 1970’s, making use of techniques based on magnetic
and optical trapping, and advanced cooling mechanisms. The first studies were
focused on the spin polarized hydrogen. It was one of the most natural candidates
for BEC because of its light mass. Experiments on hydrogen atoms, based on the
techniques mentioned above, did not succeed due to the high rate of recombination
of the individual atoms to molecules (Silvera [3] and Walraven [4], 1980 and 1986).
Later, because of the advances in laser-based techniques, such as laser cooling and
magneto-optical trapping, it was possible to cool alkali atoms to very low temper-
atures because of their favorable internal energy-level structure. Once the gas is
trapped, the temperature can be lowered further by evaporative cooling (Ketterle
and van Drute [2]). However, the equilibrium configuration of the system produced
in such a way could be a solid phase. In order to observe BEC, one has therefore
to maintain the system in a metastable gas phase for sufficient time. Moreover, the
system should be sufficiently dilute, so that the three-body collisions, which are re-
sponsible for a solid phase, can be neglected. All these difficulties were successfully
overcome by Cornell, Wieman and Ketterle [2, 1]. They observed BEC in a trapped
system of Rubidium atoms cooled down to 170 nK. For this work they received the
Nobel prized in 2001.

The technique used by Cornell and Wieman at Boulder and Ketterle at MIT is
based on the experimental studies of dilute atomic gases. They combined different
cooling techniques and succeeded in reaching the temperatures and the densities
required to observed BEC.

From the beginning the experimental and the theoretical research on this unique
phenomenon predicted by quantum statistics has involved different areas of physics.
F. London, directly after the discovery of superfluidity in liquid Helium (4He), pos-
tulated that it could be a manifestation of Bose-Einstein condensation. Landau
developed the first self-consistent theory of superfluids in terms of the spectrum of
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Figure 1: ”Easy” BEC machine. From [http://jilawww.colorado.edu/bec/]

elementary excitations of the fluid. This two-fluid hydrodynamics was proven to
be related to the thermodynamic Green’s function formulation of the many-body
problem [36]. Evidence for BEC in Helium emerged later from the analysis of the
momentum distribution of the atoms measured in neutron-scattering experiments.
In recent years, BEC has been investigated in the gas of paraexcitons in semicon-
ductors, but up to now there is no evidence for it.

With the possibility of cooling down bosons, the question arises if it is whether
or not realizable for fermions. Recently experimentalists managed to cold down
fermions in spite of the Pauli exclusion principle at a very low temperature, which
forbids that two fermions occupy the same quantum state. To exhibit Bose-Einstein
condensation, the fermions must form pairs, i.e. compound particles (e.g. molecules)
which are bosons. In order to achieve it experimentally, one makes use of the Fesh-
bach resonance for changing the coupling strength between the fermions (BCS-BEC
crossover). The first molecular Bose-Einstein condensates were created in Novem-
ber 2003 by the groups of Rudolf Grimm at the University of Innsbruck, Deborah S.
Jin at the University of Colorado at Boulder and Wolfgang Ketterle at MIT [6, 7, 8].

One of the most important features of the experimentally realized trapped Bose
gases is that they are inhomogeneous and finite systems, with the number of par-
ticles ranging from few thousands to millions. The inhomogeneity of alkali BEC is
due to an external potential, which is used to confine atoms in real space. As a
result, Bose-Einstein condensation shows up in coordinate space (see Fig. 2), mak-
ing the direct experimental investigation of the condensation feasible and provid-
ing new possibilities for interesting studies from both experimental and theoretical
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Figure 2: Images of the velocity distribution of Rubidium atoms. The left image
corresponds to the gas at a temperature above the critical temperature where the
atoms can occupy the energy levels according to Bose-Einstein statistics. The center
frame shows the appearing condensate (condensation state), i.e. the occupation of
the lowest state of energy by the atoms. And the right frame shows the condensate
after further evaporation when the majority of atoms are still in a condensed state.
From Cornell (1996)

point of view. It also allows to study in a controlled way new physical quantities
and phenomena which were not accessible previously: for example, the tempera-
ture dependence of the condensate, energy and density distribution, interference
phenomena, etc.
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Motivation and Goal

In this thesis we consider a system consisting of two independent Bose-Einstein con-
densates confined in a double well potential. The behavior of the system when the
two condensates are connected presents a fundamental problem in non-equilibrium
macroscopic quantum mechanics. The two condensates can be described by an ein-
genstate |z〉, refering to the interwell population imbalance, which can be written
in the phase representation as follows

|z〉 =

2π∫

0

dθ√
2π

eizθ|θ〉,

where |θ〉 is an eingenstate of the relative phase difference between the conden-
sates. The state may be understood as a coherent superposition of all possible
relative phases. As far as the condensates are separated, e.g., by a barrier that is
sufficiently high and/or broad, so that the particles cannot tunnel from one con-
densate to the other, the system present no problems. The situation changes when
the condensates are brought together, for example, by lowering and/or narrowing
the barrier separating the condensates. In this way a Josephson-like tunneling is
induced. As a consequence, decoherence sets in, and the relative phase can be ef-
fectively measured.1 In the present work we assume that dissipation is caused by
creation of Bogoliubov quasiparticles above the barrier, which can contribute to the
particle flow from one well to the other.

The problem under consideration in this thesis presents two relevant aspects:
First, it presents an important case of quantum measurement process that can
be treated in detail. Second, the connection between independent Bose-Einstein
condensates has features of a macroscopic interference experiment [13, 15, 14], since
it involves an initial random relative phase which becomes well define.

Previous studies on Josephson tunneling between two condensates are based
on the two-mode approximation [27, 29] or on the two-site Bose-Hubbard model
[31, 28]. In the two-mode approximation one works in the low-energy regime, which
is governed by the Gross-Pitaevskii equation for the condensate wave function.

1In general the system undergoes to a state far from equilibrium, but due to the interactions
with the dissipative environment, it eventually relaxes to an equilibrium state.
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The dynamics of the system is well explained in terms of the interwell population
imbalance and the relative phase. It can be shown also that equations of motion
of the system can be mapped to equations describing a mathematical pendulum.
Numerical analysis of these equations show two different regimes depending on the
initial population imbalance and on the self-interaction parameter. The theoretical
results obtained in [27] were corroborated experimentally. Markus Oberthaler and
his research group realized a single Bose-Josephson junction [15]. They first created
a Bose condensate in a 3D-harmonic trap. Then they superposed it with a 1D-
periodical trap with very large lattice spacing. In this way they split the initial
condensate into two components. In the new configuration of the system they
measured the population imbalance as a function of time. Then, at a certain time
t = t0 they switched off the 1D trap and observed the interference pattern, from
which they extracted the relative phase. They repeated the procedure for different
times t0 in order to obtain the relative phase as a function of time. On the other side
the studies on the two-site Bose-Hubbard model presented the quantum dynamics
of the system (neglecting dissipation). The calculations presented in [31, 28] are
limited to a small number of particles, which not correspond to the experimental
realizations. This two different approaches do not include non-equilibrium features
appearing in the experiments. Thus, they have to be extended and this is the aim
of this thesis.

An additional motivation to study the mixing of condensates is the atom laser.
Similarities between Bose-Einstein condensation and laser light suggest the experi-
mental realization of a bright, coherent matter wave, which will open new avenues
of fundamental tests of quantum mechanics. The possible creation of a continu-
ous, coherent atomic beam, has been a topic of great interest. One of the major
challenges lies in the obtention of continuous condensation of atomic gases due to
the stringent cooling conditions. Alternatively, one can realize a continuous source
of condensate either by bringing new condensates into the trap and uniting them
[17], or by coupling to spatially separated condensates with large particle number
[16]. If the mixing of condensates takes place in a non adiabatic way, new features
arise, for example, concerning the strength of the depletion of the condensates. It
is therefore interesting to study the elementary excitations, because they have the
same spectrum as the density fluctuations [39].

In the present work we consider a system consisting of two Bose-Einstein con-
densates with large particle numbers confined in a double well potential at zero
temperature. Upon sudden lowering of the barrier between the condensates, the
condensates mix and Bogoliubov quasiparticles above the condensates are created,
absorbing part of the system’s entropy. The non-adiabatic switching process is de-
scribed by projecting the exact Hamiltonian onto a sub-Hilbertspace comprised of
a two-mode approximation for the condensates and single-particle excitations. We
use non-equilibrium field theoretical methods to compute the kinetic equations for
the non-condensate particles and the associated equations for the two condensates
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wave functions.
In the following chapter 1 we introduce the field theoretical methods for bosons

in the presence of a condensate. Since the subject of study is a system consisting of
bosons at zero temperature that is suddenly perturbed, it displays non-equilibrium
features which require the non-equilibrium extension presented in Chapter 2. This
completes the theoretical tools needed to study the problem. In Chapter 4 we
present our model, and performe the microscopic derivation of the Hamiltonian.
We compute its corresponding kinetic equations for the distribution functions, and
the associated equation of motion for the two macroscopic condensate wave func-
tions. In order to have a better understanding how the inclusion of the single-
particle excitation (which have the same spectrum as the condensate amplitude
oscillations) affects the system, we compare the dynamics of system described with
the non-equilibrium theoretical tools with the mean field approximation presented
in Chapter 3. In Chapter 5 we present our numerical results for the equations com-
puted within the Bogoliubov-Hartree-Fock approximation and discuss our finding.
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Chapter 1

Field Theory for a System of

Bosons at Zero Temperature

In this chapter we consider a system of weakly interacting bosons at zero temper-
ature in the presence of external trapping potential. Most of the bosons in this
case are concentrated in the lowest state of energy. As a consequence, averages of
normal products of Bose creation and annihilation operators are not only nonvan-
ishing, but can actually be arbitrarily large, and this should be taken into account
while constructing a field theoretical approach. Therefore, the generalization of the
methods of quantum field theory to the case of a system of interacting bosons at
temperatures below the temperature of Bose-Einstein condensation contains large
difficulties. Nevertheless, the appropiate formalism has been developed by S. T.
Beliaev [20]. In this chapter we present the path integral approach, followed by the
derivation of the Dyson-Beliaev equations for the Green’s function [24, 34].

We will first show how the mean field Gross-Pitaevskii comes about and the pro-
ceed to the inclusion of the Hartree-Fock corrections to the non-condensate particle
Green’s function and derive the Bogoliubov-Hartree-Fock coupled equations.

We consider the general Hamiltonian of a system of interacting bosons

H =

∫
d3x Ψ†(~x, t)

(
− 1

2m
△+ Vext(~x, t)− µ

)
Ψ(~x, t)

+
1

2

∫
d3x

∫
d3y Ψ†(x, t)Ψ†(y, t)U(x− y)Ψ(y, t)Ψ(x, t) (1.0.1)

Here are Ψ†(~x, t) and Ψ(~x, t) the creation and annihilation field operators, respec-
tively. Vext is the trapping potential and U(~x − ~y) is the two body interaction
potential.

Since Bose dilute gases are considered throughout of this thesis, the interaction
between the bosons is local, i.e.

U(~x− ~y) = gδ(~x− ~y), (1.0.2)

7



and the Hamiltonian (1.0.1) is reduced to

H =

∫
d3x Ψ†(~x, t)

(
− 1

2m
△+ Vext(~x, t)− µ

)
Ψ(~x, t)

+
g

2

∫
d3x Ψ†(~x, t)Ψ†(~x, t)Ψ(~x, t)Ψ(~x, t), (1.0.3)

where

g =
4πas

m
(1.0.4)

and as as the s-wave scattering length.
The partition function of this model can be written as a path integral

Z =

∫
d[φ∗]d[φ]eiS[φ∗,φ] (1.0.5)

with the action S being a functional of the fields φ∗ and φ corresponding to the
operators Ψ† and Ψ, respectively:

S[φ∗, φ] =

∫
dt

∫
d3xφ∗(~x, t)

(
i
∂

∂t
−
[
− 1

2m
△+ Vext(~x, t)− µ

])
φ(~x, t)

−g

2

∫
dt

∫
d3xφ∗(~x, t)φ∗(~x, t)φ(~x, t)φ(~x, t) (1.0.6)

Now that we got the action describing our system we will present first in the
proceeding section the mean field approach and derive the Gross-Pitaevskii equation

for the condensate wave function. Then we will compute the corrections to this
result in a systematic way.

1.1 Condensate Order Parameter and

Gross-Pitaevskii Equation

In a system consisting of bosons at zero temperature the phase transition of interest
is the Bose-Einstein condensation. The associated order parameter is defined

φ0(~x, t) = 〈φ(~x, t)〉 (1.1.1)

which corresponds to the condensate wave function. We notice that below the
critical temperature the order parameter is finite. Above the critical temperature
its contribution to the field is negligibly small.

Consider now the system at zero temperature and assume that all particles are
in the ground state. It is therefore an appropiate approximation to replace the fields
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φ∗ and φ by their expectations values 〈φ∗〉 and 〈φ〉, respectively. Thus the action
takes the form

S[φ∗0, φ0] =

∫
dt

∫
d3xφ∗0(~x, t)

(
i
∂

∂t
−
[
− 1

2m
△+ Vext(~x, t)− µ

])
φ0(~x, t)

−g

2

∫
dt

∫
d3xφ∗0(~x, t)φ∗0(~x, t)φ0(~x, t)φ0(~x, t), (1.1.2)

where the action S is now a functional of φ∗0 and φ0.
In order to derive the equation of motion for the condensate wave function φ0

we variate the action (1.1.2) with respect to φ∗0 and require this variation (saddle
point approximation) to be zero. We immediately obtain

(
i
∂

∂t
−
[−1

2m
△+ Vext(~x, t) + g|φ0(~x, t)|2 − µ

])
φ0(~x, t) = 0 (1.1.3)

This equation is called Gross-Pitaevskii equation. It was derived independently
by Gross and Pitaevskii and is one of the most frequently used theoretical tools
for investigating non-uniform dilute Bose gases at low temperatures. It has the
form of a mean field equation where the order parameter must be calculated in a
self-consistent way.

Now let us turn our attention to the order parameter. We observe that the order
parameter is normalized to the total number of particles

N =

∫
d3x|φ0(~x, t)|2. (1.1.4)

This implies that
n(~x, t) = |φ0(~x, t)|2 (1.1.5)

where n(~x, t) is the density of the condensate, which coincides with the density of
the gas in this approximation. Moreover one can state, based on Eq. (1.1.5), that
the order parameter may be written as

φ0(~x, t) =
√

n(~x, t)eiθ(~x,t) (1.1.6)

where θ(~x, t) is the phase of the condensate wave function. It also can be shown
that φ0 satisfies the hydrodynamic equations

0 =
∂

∂t
n(~x, t) + div

(
n(~x, t)

(
1

m
∇θ(~x, t)

))
(1.1.7)

0 =
∂

∂t
θ(~x, t)− µ +

1

2
mv2

θ + Vext + gn(~x, t)− 1

2m
√

n(~x, t)
△
√

n(~x, t)

(1.1.8)
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with vθ = ∇θ as the fluid velocity and the phase θ(~x, t) as its potential.1 Moreover
we can prove with the help of the hydrodynamic equations that the density n(~x, t)
and the phase θ(~x, t) are canonical conjugated, i.e.

n̂(~x, t)θ̂(~y, t)− θ̂(~y, t)n̂(~x, t) = iδ(~x− ~y). (1.1.9)

Here we used the ”hat” in order to differentiate between the operators n̂ and θ̂ after
the quantization from the dynamical variables n and θ.

1.2 Bogoliubov Approximation

The standard field theoretical approach makes use of the fact that the average of a
product of several noninteracting operators Ψ and Ψ† can be reduced to products of
averages of pairs of the operators. This is a consequence of Wick’s theorem, which
states that the average of a chronological product of any number of field operators
decomposes into a sum of normal products with all possible pairings. For a system
of fermions, the ground state or ”vacuum” is such that the normal products can
be made to vanish by properly defining the annihilation and creation operators. In
fact, in a Bose gas at low temperatures, an arbitrarily huge number of particles can
be ”condensed” in the lowest state of energy. Thus, a characteristic feature of the
state of Bose-Einstein condensation is that the density of particles in the lowest
state of energy approaches a finite value in the thermodynamic limit,2 i.e.

n0(~x, t)
N
V

=const−−−−−→
V,N→∞

finite (1.2.1)

where n0 is the particle density in the lowest state of energy, N the total number of
particles, and V the volume of the system. From the preceeding section we know
that the number density of particles in the lowest state of energy is connected to the
order parameter. Therefore, a finite n0 means a finite order parameter φ0 = 〈Ψ〉.
This has as a consequence that the averages of normal products of bosonic field
operators are not only nonvanishing, but can be arbitrarily large.

In order to construct a field theory for a bosonic system a zero temperature, we
have to do an appropiate approximation [18, 20]. This theory will be an extension
of the mean field theory presented in the preceeding section, which will determine
the corrections to Gross-Pitaevskii equation, derived in section 1.1.

We consider first the action (1.0.6), which is associated to a dilute gas of spinless

1Such a definition of the fluid velocity and its potential is only valid for rotationless fluids.
2The limit presented here is well defined for uniform systems. In a trapped gas the density is

not uniform and consequently the thermodynamic limit should be defined in a different way. For
more details see [11]
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bosons at zero temperature

S[φ∗, φ] =

∫
dt

∫
d3xφ∗(~x, t)

(
i
∂

∂t
−
[
− 1

2m
△+ Vext(~x, t)− µ

])
φ(~x, t)

−g

2

∫
dt

∫
d3xφ∗(~x, t)φ∗(~x, t)φ(~x, t)φ(~x, t). (1.2.2)

Then we expand φ around the order parameter

φ(~x, t) = φ0(~x, t) + φ′(~x, t) (1.2.3)

where φ′ is the field corresponding to the particles out the condensate. It is impor-
tant to realize that in order to consistently define the fluctuations φ′ in this manner,
we have to require that

∫
d3xφ∗0(~x, t)φ′(~x, t) =

∫
d3xφ0(~x, t)(φ′)∗(~x, t) = 0. (1.2.4)

The physical reason for this condition is that φ′ should contain all the configu-
rations that are orthogonal to φ0. We find after the above substitution that

S[φ∗, φ] = S[φ∗0, φ0] + S0[φ
∗, φ] + Sint[φ

∗, φ], (1.2.5)

where the linear and quadratic terms in φ′ are given by

S0[φ
∗, φ] =

∫
dt

∫
d3x (φ′)∗

(
i
∂

∂t
−
[
− 1

2m
△+ Vext(~x, t) + g|φ0|2 − µ

])
φ0

+

∫
dt

∫
d3xφ∗0

(
i
∂

∂t
−
[
− 1

2m
△+ Vext(~x, t) + g|φ0|2 − µ

])
φ′

+

∫
dt

∫
d3x (φ′)∗

(
i
∂

∂t
−
[
− 1

2m
△+ Vext(~x, t) + 2g|φ0|2 − µ

])
φ′

− g

2

∫
dt

∫
d3x (φ0)

2(φ′)∗(φ′)∗

− g

2

∫
dt

∫
d3x (φ∗0)

2φ′φ′ (1.2.6)

and the cubic and quartic terms by

Sint[φ
∗, φ] = −g

∫
dt

∫
d3xφ0φ

′(φ′)∗(φ′)∗

− g

∫
dt

∫
d3xφ∗0(φ

′)∗φ′φ′

− g

2

∫
dt

∫
d3x (φ′)∗(φ′)∗φ′φ′, (1.2.7)

11



where the fields φ0 and φ′ are both time and spatial dependent.
In the Bogoliubov approximation we neglect the last three interaction terms

[18, 11]. Furthermore we observe that the linear terms in φ′ and (φ′)∗ vanish,
according to the Gross-Pitaevskii equation. In this manner it is ensured that

〈φ(~x, t)〉 = φ0(~x, t) and 〈φ′(~x, t)〉 = 0. (1.2.8)

Moreover, we see that the total density of the gas splits within this approxima-
tion into two components

n(~x, t) = 〈φ∗(~x, t+)φ(~x, t)〉
= |φ0(~x, t)|2 + 〈(φ′)∗(~x, t+)φ′(~x, t)〉
= n0(~x, t) + n′(~x, t) (1.2.9)

where n0(~x, t) and n′(~x, t) are the densities of the particles in the condensate and
above the condensate, respectively. The notation t+ means that the time argument
of φ∗(~x, t+) is infinitesimally larger than the time argument of φ(~x, t).

The total number of particles in the condensate is given by Eq. (1.1.4). As
it is displayed by Eq. (1.1.5), the number of particles in the condensate is in
general smaller than the total number of particles in the gas due to the effect of the
fluctuations.

Now we assume that the Gross-Pitaevskii equation (Eq. (1.1.3)) has already
been solved. In order to determine the corrections in the Bogoliubov approximation
we consider the quadratic term in the action

S0[φ
∗, φ] =

∫
dt

∫
d3x (φ′)∗

(
i
∂

∂t
−
[
− 1

2m
△+ Vext(~x, t) + 2g|φ0|2 − µ

])
φ′

− g

2

∫
dt

∫
d3x (φ0)

2(φ′)∗(φ′)∗ − g

2

∫
dt

∫
d3x (φ∗0)

2φ′φ′

=
1

2

∫
dt′
∫

dt

∫
d3x′

∫
d3x [(φ′)∗(~x, t), φ′(~x, t)] ·

·
(

G−1
0 (~x, t; ~x′, t′) 0

0 (G−1
0 )∗(~x, t; ~x′, t′)

) [
(φ′)∗(~x′, t′)

φ′(~x′, t′)

]

− 1

2

∫
dt′
∫

dt

∫
d3x′

∫
d3x [(φ′)∗(~x, t), φ′(~x, t)] ·

·
(

2g|φ0(~x, t)|2 g(φ0(~x, t))2

g(φ∗0(~x, t))2 2g|φ0(~x, t)|2
)

δ(t− t′)δ(~x, ~x′)

[
(φ′)∗(~x′, t′)

φ′(~x′, t′)

]

=
1

2

∫
dt′
∫

dt

∫
d3x′

∫
d3x [(φ′)∗(~x, t), φ′(~x, t)] ·

·G−1(~x, t; ~x′, t′)

[
(φ′)∗(~x′, t′)

φ′(~x′, t′)

]
(1.2.10)
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with the noninteracting Green’s function G0 defined by

G−1
0 (~x, t; ~x′, t′) =

(
i
∂

∂t
+

1

2m
△x − Vext + µ

)
δ(t− t′)δ(~x, ~x′), (1.2.11)

and G being the exterior product of [(φ′)∗(~x, t), φ′(~x, t)] and its hermitian conjugate.
G is the associated Green’s function and has now a matrix structure, because
not only the normal average 〈(φ′)∗(~x, t)φ′(~x′, t′)〉 but also the anomalous average
〈φ′(~x, t)φ′(~x, t)〉 is now unequal to zero. This is a consequence of the finite value
of the order parameter for temperatures below the critical temperature. Thus we
have that

G(~x, t; ~x′, t′) = −i

(
〈φ′(~x, t)(φ′)∗(~x′, t′)〉 〈φ′(~x, t)φ′(~x′, t′)〉
〈(φ′)∗(~x, t)(φ′)∗(~x′, t′)〉 〈(φ′)∗(~x, t)φ′(~x′, t′)〉

)
. (1.2.12)

It is clear from Eq. (1.2.10) that G satisfies the equation

G−1(~x, t; ~x′, t′) =

(
G−1

0 (~x, t; ~x′, t′) 0

0 (G−1
0 )∗(~x, t; ~x′, t′)

)

−
(

2g|φ0(~x, t)|2 g(φ0(~x, t))2

g(φ∗0(~x, t))2 2g|φ0(~x, t)|2
)

δ(t− t′)δ(~x, ~x′),

(1.2.13)

which is clearly the lowest order result for the Green’s function, because a pertur-
bative treatment of Sint leads to higher order corrections. In general, the equation
(1.2.13), known as the Dyson-Beliaev equation, can be written in the following form

(
G11 G12

G21 G22

)−1

=

(
G−1

0 0
0 (G−1

0 )∗

)
−
(

Σ11 Σ12

Σ21 Σ11

)
(1.2.14)

where Gij for i, j = 1, 2 are the components of G in the Bogoliubov space. Σkl for
k, l = 1, 2 are the components for the selfenergy Σ. The off-diagonal elements are
again called anomalous, since they vanish in the normal phase of the gas. Diagram-
matically the Dyson-Beliaev equations are shown in Fig. 1.1. The self-energy in
the Bogolibov approximation is

Σ(~x, t; ~x′, t′) =

(
2g|φ0(~x, t)|2 g(φ0(~x, t))2

g(φ∗0(~x, t))2 2g|φ0(~x, t)|2
)

δ(t− t′)δ(~x, ~x′). (1.2.15)

The diagrams corresponding to the different components of Σ are displayed in Fig.
1.2.

The Bogoliubov approach is only valid if the fluctuations are sufficiently small,
since we have completely neglected the term in the action containing 3 and 4 fields
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Σ11 Σ12
= + Σ11 Σ12
= + +

+

Σ21 +

+

+ Σ22 Σ21
=

= Σ22

= Σ11 Σ12

Figure 1.1: Exact Dyson-Belayev equations for the interacting normal and anoma-
lous Green’s functions.

Σ11 Σ21 Σ12

Figure 1.2: Bogoliubov self-energies. The dashed lines corresponds to condensate
particles and the solid lines to the particles above the condensate.

φ′. Physically, this implies that the depletion of the condensate must be small.
This approach can not therefore be applied to liquid helium, but it is expected to
be valid for a weakly interacting atomic gas at sufficiently low temperatures. Under
these conditions the Bogoliubov theory not only predicts the condensate density

n(~x, t) = |φ0(~x, t)|2, (1.2.16)

but also the collective modes of the condensate. Theoretically, the eigenfrequencies
of the collective modes are again determined by the poles of the one particle Green’s
function for the particles above the condensate. In order to understand more clearly
how these can be determined, we first consider a homogeneous Bose gas [18, 20, 11].

Consider now a uniform gas confined in a box of volume V = L3. The one
particle states are easily characterized by the wavevector

~k =
2π~n

L
for ~n ∈ Z

3. (1.2.17)
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The one particle states and their corresponding energies are thus e−iǫ~kt+i~k~x/
√

V and

ǫ~k = |~k|2

2m
, respectively. Now making use of Fourier transformation we find for Eq.

(1.2.13):

G−1(~k, ω) =

(
ω − ǫ~k − g|φ0(~x, t)|2 g(φ0(~x, t))2

g(φ∗0(~x, t))2 −ω − ǫ~k − g|φ0(~x, t)|2
)

. (1.2.18)

Here we used the fact that the Gross-Pitaevskii equation reduces to

µ = g|φ0|2. (1.2.19)

In this case the macroscopic wave function is independent of the position in the
box. Moreover it is clear that the poles of G are determined by its determinant.
The poles deliver us the excitation spectrum of the system:

ω~k =
√

ǫ2
~k

+ 2g|φ0|2ǫ~k =
√

ǫ2
~k

+ 2gn0ǫ~k. (1.2.20)

This is the famous Bogoliubov dispersion relation of the collective excitations.
For small momenta |~k| ≪ m|~c| the dispersion law of the quasi-particle takes a

phonon-like form
ω~k = c~k, (1.2.21)

where ~c =
√

gn0/m is the sound velocity. This means that the Bogoliubov approx-
imation predicts that the long wave excitations of a weakly interacting Bose gas
are sound waves and can be regarded as the Goldstone modes associated with the
breaking of gauge symmetry caused by Bose-Einstein condensation.

In the opposite limit |~k| ≫ m|~c| the dispersion law approaches the free particle
law:

ω~k =
~k2

2m
+ gn0. (1.2.22)

The generalization to the inhomogeneous case is straightforward. In the same
way as above, we first have to solve the Gross-Pitaevskii equation and fix the chem-
ical potential. Then we can calculate the poles of G, or equivalently and more
conveniently, the zero’s of G−1. Then the calculations reduces to the eigenvalue
problem

(
h0 + 2g|φ0|2 g(φ0)

2

g(φ∗0)
2 h0 + 2g|φ0|2

)
·
(

un(~x)
vn(~x)

)
=

(
ωn 0
0 −ωn

)
·
(

un(~x)
vn(~x)

)
(1.2.23)

where we introduced the one-particle operator h0 = −△/2m + Vext(~x) − µ. This
is called the Bogoliubov-de Gennes equation. Moreover, it can be shown that the
functions un and vn satisfy the orthonormalization relation

∫
d3x [u∗i (~x)uj(~x)− v∗i (~x)vj(~x)] = δij. (1.2.24)
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Physically, the zero frequency solution n = 0 describes the dynamics of the global
phase of the condensate. Because of the U(1) symmetry of the action, this solution
is essentially of no importance for the thermodynamic properties of a macroscopic
gas system and is therefore usually neglected.

1.3 Bogoliubov-Hartree-Fock coupled equation

At temperatures near absolute zero, the Bogoliubov approximation is well defined.
However at higher temperatures the number density of thermally excited particles
n′(~x, t) = iG11(~x, t; ~x, t+) becomes finite. We therefore treat the non-condensate
part of the gas in the Hartree-Fock approximation, which is the lowest order ap-
proximation. Thus we find for the interaction part of the action

SHF
int [φ∗, φ] = 2g

∫
dt

∫
d3xn′(~x, t)(φ′)∗(~x, t)φ0(~x, t)

+ 2g

∫
dt

∫
d3xn′(~x, t)φ′(~x, t)φ∗0(~x, t)

+ 2g

∫
dt

∫
d3xn′(~x, t)(φ′)∗(~x, t)φ′(~x, t)

+ g

∫
dt

∫
d3x [m′(~x, t)(φ′)∗(~x, t)φ∗0(~x, t) + c.c]

+
g

2

∫
dt

∫
d3x [m′(~x, t)(φ′)∗(~x, t)(φ′)∗(~x, t) + c.c] (1.3.1)

that adds to the action S0[φ
∗, φ]. Here we introduced the complex anomalous density

m′(~x, t) = iG12(~x, t : ~x, t+) = 〈(φ′)(~x, t+)(φ′)(~x, t)〉 . (1.3.2)

In Fig. 1.3 we display how this can be understood diagrammatically.
Performing the same analysis as above, we conclude that the Gross-Pitaevskii

equation is modified to

i
∂

∂t
φ0(~x, t) =

[
− 1

2m
△+ Vext(~x, t) + 2gn′(~x, t) + g|φ0(~x, t)|2 − µ

]
φ0(~x, t)

+m′(~x, t)φ∗0(~x, t), (1.3.3)

and the normal self-energies are changed into Σ11 = Σ22 = 2g|φ0|2 + 2gn′ and the
anomalous into Σ12 = (Σ21)

∗ = g(φ0)
2 + gm′. Hence we get for the Bogoliubov-de

Gennes equation

(
h0 + 2g(n′ + |φ0|2) g(φ0)

2 + gm′

g(φ∗0)
2 + gm′∗ h0 + 2g(n′ + |φ0|2)

)
·
(

un(~x)
vn(~x)

)
=

(
ωn 0
0 −ωn

)
·
(

un(~x)
vn(~x)

)
.

(1.3.4)
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2

22

= +

+Σ11 =

Figure 1.3: The dashed lines correspond to the condensate particles and the solid
lines to the non-condensate particles.

These two last equation are known as the Bogoliubov-Hartree-Fock coupled equa-
tions.

A simplified version of the Bogoliubov-Hartree-Fock approximation is the Hartree-
Fock-Popov approximation [26], where the anomalous density m′ is ignored. It is
intensely studied in the context of Bose-Einstein condensation in atomic gases, and
has been applied to the equilibrium density profile of the gas below the critical
temperature [10]. The Popov theory describes the condensate in the presence of a
static noncondensed cloud and takes the dynamics of the noncondensed cloud out
of consideration. However we will show lateron how to describe the non-equilibrium
features of the noncondensed cloud.
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Chapter 2

Non-Equilibrium Extension for a

System of Bosons in Presence of a

Condensate

In Chapter 1 we considered a bosonic gas in a trap. We derived within the
Bogoliubov-Hartree-Fock approximation the equation of motion for the macroscopic
wave function and the associated Dyson-Beliaev equation for the non-condensate
particle Green’s function. In this Chapter we want to extend these results for the
non-equilibrium case. Non-equilibrium features show up, e.g. when we perturb the
system in a non-adiabatic way.

We first present the general idea, how to extend the usual equilibrium field
theory to the non-equilibrium case [32, 35, 34], and then proceed similarly in order
to find a non-equilibrium description of the results obtained in Chapter 1 (see also
[43, 42, 40, 39, 37, 36]).

2.1 Non-Equilibrium Field Theory

2.1.1 The closed time path

The standard construction of the equilibrium many-body theory (see. e.g. [18])
involves the adiabatic switching ”on” of interactions at a distant past, and ”off”
at a distant future. The crucial assumption in this case is that starting from the
ground (or equilibrium) state of the system at t = −∞ one reaches the same state
at t = +∞ (up to some phase that was acquired along the way).

This is clearly not the case for systems out of equilibrium. If one starts from some
arbitrary distribution of states and then switches on and off the interactions, one is
going to find the system in a state, which depends, in general, on the characteristics
of the switching procedure. The absence of knowledge of the final state ruins the
completely the whole construction, since we want to compute averages (or traces) of
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t

c

Figure 2.1: The closed time path c

operators corresponding to the physical observables. Thus, one needs to construct
a theory which avoids the reference to the final state at t = ∞. Nevertheless, we
still need to know a final state, since we want to compute averages (or traces).
Julian Schwinger suggested to take the final state exactly as the initial one (see also
[32]). The main idea is to let the quantum system evolve first in the forward time
direction and then to rewind its evolution back. At the end one has to construct a
theory with the time evolution along the two-branch contour depicted in Fig. 2.1.

This means that no matter what was the final state at t = +∞, after the
backward evolution the system will return back to the known initial state at t =
−∞. In this construction there is no switching off of the interaction in the far
future. Instead of it, both switching on and off take place in the past; on - on the
forward branch of the contour and off - on the backward branch. How to construct
such a theory and how to use it is the subject of this Section.

In order to construct a theory along the closed time contour we consider a quan-
tum system in thermal equilibrium, which is represented by the time independent
Hamiltonian H. Starting from this Hamiltonian the generic non-equilibrium prob-
lem can be formulated as follows: far in the past, prior to time t0, the system
can be thought of as having been brought to the equilibrium state. Then at times
larger than t = t0, a time-dependent mechanical perturbation, described by H ′(t),
is applied to the system. The total Hamiltonian is thus

H(t) = H + H ′(t), (2.1.1)

where H is the Hamiltonian for the isolated system of interest and H ′(t) is a time
dependend perturbation acting on it.

The simplest non-equilibrium problem is concerned with the calculation of some
average value of a physical quantity A at times t > t0. The unitary transformations
relating operators in the Heisenberg pictures governed by the Hamiltonians in H(t)
and H, respectively, is specified by the unitary transformations

OH(t) = V †(t, t0)OH(t)V (t, t0) , V (t, t0) = Te
−i

R t
t0

dt′H′H(t′)
(2.1.2)

and
OH(t) = U †(t, t0)OSU(t, t0) , U(t, t0) = e−iH(t−t0). (2.1.3)
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where we have chosen t0 as the reference time where the two pictures coincide.
Compairing the two pictures one obtains

OH(t) = U †H(t, t0)U(t0, t)OH(t)U †(t, t0)UH(t, t0), (2.1.4)

where
UH(t, t0) = Te

−i
R t

t0
dt′H(t′)

(2.1.5)

is the time evolution operator corresponding to the Hamiltonian H(t). Further one
observes that the evolution operator V (t, t0) satisfies the same differential equation
and initial condition as U †(t, t0)UH(t, t0). Thus we obtain the formula

V (t, t0) = U †(t, t0)UH(t, t0) (2.1.6)

or explicitly

Te
−i

R t
t0

dt′H′H(t′)
= eiH(t−t0)Te

−i
R t

t0
dt′H(t′)

. (2.1.7)

We now consider the contour, the closed time path, introduced above, which
starts at t0 and proceeds along the real time axis to time t and back again to t0
(Fig. 2.1).

We then show that the transformation between the two Heisenberg pictures, Eq.
(2.1.4), can be expressed on closed contour form as

OH(t, t0) = Tc

[
e−i

R

c
dτH′H(τ)OH(t)

]
(2.1.8)

where τ denotes the contour variable proceeding from t0 along the real time axis
to t. Tc is the contour time ordering operator, that arranges products of operators
according to the position of their contour time argument on the closed contour,
later contour time places an operator to the left.

For the proof of Eq. (2.1.8) we expand exponential as follows

OH(t, t0) =
∞∑

k=0

(−i)k

k!

∫

c

dτ1 · · ·
∫

c

dτk Tc [H ′H(τ1) · · ·H ′H(τk)OH(t)] (2.1.9)

Now let us only consider the k-th order term. We then split the contour into forward
and backward parts

c = −→c +←−c . (2.1.10)

The splitting of the contour into forward and backward contours gives 2k.
∫

c

dτ1 · · ·
∫

c

dτk Tc [H ′H(τ1) · · ·H ′H(τk)OH(t)] = Tc

[(∫

c

dτ H ′H(τ)

)k

OH(t)

]

= Tc

[(∫

−→c

dτ H ′H(τ) +

∫

←−c

dτ H ′H(τ)

)k

OH(t)

]

=
k∑

m=0

(
k
m

)
T−→c

[(∫

−→c

dτ H ′H(τ)

)k
]

OH(t) T←−c

[(∫

←−c

dτ H ′H(τ)

)k−m
]

(2.1.11)
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Now the summation over k becomes trivial, giving

Tc

[
e−i

R

c
dτH′H(τ)OH(t)

]

=
∞∑

k=0

(−i)k

k!

k∑

m=0

(
k
m

)
T−→c

[(∫

−→c

dτ H ′H(τ)

)k
]

OH(t) T←−c

[(∫

←−c

dτ H ′H(τ)

)k−m
]

= T−→c

[
∞∑

k=0

(−i)k

k!

(∫

−→c

dτ H ′H(τ)

)k
]

OH(t) T←−c

[
∞∑

k=0

(−i)m

m!

(∫

←−c

dτ H ′H(τ)

)m
]

= T−→c

[
e−i

R

−→c
dτH′H(τ)

]
OH(t) T←−c

[
e−i

R

←−c
dτH′H(τ)

]

(2.1.12)

Parameterizing the forward and backward contours according to

τ(t′) = t′ t′ ∈ [t0, t], (2.1.13)

we get

T−→c

[
e−i

R

−→c
dτH′H(τ)

]
= T

[
e
−i

R t
t0

dt′H′H(t′)
]

= V (t, t0) (2.1.14)

and
T←−c

[
e−i

R

←−c
dτH′H(τ)

]
= T̃

[
ei

R t0
t dt′H′H(t′)

]
= V †(t, t0), (2.1.15)

i.e. contour ordering along the forward contour is identical to ordinary time order-
ing, T−→c = T , whereas contour ordering along the backward contour corresponds to
anti-time ordering, T←−c = T̃ . The equivalence between Eq. (2.1.4) and Eq. (2.1.8)
has thus been established.

2.1.2 The closed time path Green’s function

Green’s functions play a fundamental role in statistical physics since they allow to
calculate physical observables.

Now we start by introducing the lesser and greater Green’s functions:

G<(1, 1′) = ∓i
〈
Ψ†H(1′)ΨH(1)

〉
(2.1.16)

and
G>(1, 1′) = −i

〈
ΨH(1)Ψ†H(1′)

〉
, (2.1.17)

where ΨH(1) is the field operator in the Heisenberg picture with respect to the
Hamiltonian H(t) and where the short-hand notation

1 ≡ (t1, ~x1) (2.1.18)

has been introduced. Here ~x1 denotes the spatial variable.
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Further we define the Green’s function on the closed time contour, depicted in
Fig (2.1)

G(1, 1′) = −i
〈
Tc

[
ΨH(1)Ψ†H(1′)

]〉
(2.1.19)

where Tc is the time ordering operator on the contour c that orders the operators
according to the position on the contour of their time arguments

Tc

[
ΨH(1)Ψ†H(1′)

]
=

{
ΨH(1)Ψ†H(1′) t1 >c t1′

±Ψ†H(1′)ΨH(1) t1 <c t1′
, (2.1.20)

where t1 <c t1′ means that t1 is further along the contour than t1′ . Comparing the
definition of the contour ordering operator with Eq. (2.1.16) and Eq. (2.1.17) we
observe that

G(1, 1′) =

{
G>(1, 1′) t1 >c t1′

G<(1, 1′) t1 <c t1′ .
(2.1.21)

From the equation of motion for the field operator, it can be shown that the equation
of motion for the contour-ordered Green’s function is
(

i
∂

∂t1
− h0(t1)

)
G(1, 1′) = δ(~x1 − ~x1′)δc(t1 − t1′)− i

〈
Tc

(
[Ψ(1), Hi(1)] Ψ†(1)

)〉

(2.1.22)
where h0 denotes the single-particle Hamiltonian, Hi is the many-particle interaction
Hamiltonian , and we have introduced the contour delta function

δc(t1 − t1′) =






δ(t1 − t1′) for t1 and t1′ on upper branch

−δ(t1 − t1′) for t1 and t1′ on lower branch

0 for t1 and t1′ on different branches

. (2.1.23)

The Eq. (2.1.22) will be later the starting point for the derivation of the kinetic
equation.

In the proceeding section we will present the perturbation theory that will be
used throughout this thesis and show how it is related with the Quantum Boltzmann
Equation.

2.1.3 Keldysh formulation and the kinetic equations

In this section we demonstrate how the equation of motion for the closed time
path Green’s function is reduced to a kinetic equation. For this purpose with start
considering the contour-ordered Green’s function

G(1, 1′) = −i
〈
Tc

[
ΨH(1)Ψ†H(1′)

]〉
(2.1.24)
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cK

Figure 2.2: The Keldysh contour cK

Then we make use of Eq. (2.1.8) that relates the two Heisenberg pictures on the
closed time contour and rewrite G as follows

G(1, 1′) = −i
〈
Tc1

[
e
−i

R

c1
dτ H′H(τ)

ΨH(1)
]
Tc1′

[
e
−i

R

c1′
dτ H′H(τ)

Ψ†H(1′)
]〉

= −i
〈
Tc1+c1′

[
e
−i

R

c1+c1′
dτ H′H(τ)

ΨH(1)Ψ†H(1′)
]〉

= −i
〈
Tc

[
e−i

R

c
dτ H′H(τ)ΨH(1)Ψ†H(1′)

]〉
, (2.1.25)

where in the first line the contour c1 (c1′) starts at t0 and passes through t1 (t1′),
respectively, and returns to t0. In the last equality we introduced the combined
contour c, which starts at t0 and stretches through max(t1, t1′) (or all the way to
+∞) and back again to t0.

Comparing Eq. (2.1.25) and its equilibrium field theory analog we observe that
the nonequilibrium version of the Green’s function the expectation value

〈
Tc

[
exp

(
−i

∫

c

dτ H ′H(τ)

)]〉

is missing in the denominator. The absence of the denominator suggests that the
non-equilibrium perturbation theory has a simpler structure than the standard
equilibrium theory as there is no need for canceling of unlinked or disconnected
diagrams.

Since we are not interested in the initial correlations we can let t0 to minus
infinity, t0 → −∞, and we then obtain the contour cK introduced by Keldysh
(1964). The contour cK depicted in Fig. (2.2) consists of two parts: c1 extending
from −∞ to +∞ and c2 extending from +∞ to −∞.

The contour-ordered Green’s function GcK
specified by the Keldysh contour can

then be mapped onto the Keldysh space,

GcK
(1, 1′) 7−→ Ĝ ≡

(
Ĝ11 Ĝ12

Ĝ21 Ĝ22

)
, (2.1.26)

by the prescription that the ij component of Ĝ can be defined as GcK
(1, 1′) for t1

and t1′ residing on ci and cj, respectively. Ĝ11 is the usual time-ordered Green’s
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function and Ĝ22 denotes the anti-time-ordered Green’s function. The remaining
two components Ĝ12 and Ĝ21 are the lesser and greater Green’s functions introduced
in the Section 2.1.2, respectively:

Ĝ11(1, 1
′) = −i

〈
T
[
ΨH(1)Ψ†H(1′)

]〉
,

Ĝ12(1, 1
′) = G<(1, 1′),

Ĝ21(1, 1
′) = G>(1, 1′),

Ĝ22(1, 1
′) = −i

〈
T̃
[
ΨH(1)Ψ†H(1′)

]〉
. (2.1.27)

Further, the components of Ĝ are not linearly independent and from their definition
one obtains the relation

Ĝ11 + Ĝ22 = Ĝ12 + Ĝ21. (2.1.28)

Moreover, performing a rotation in Keldysh space it is possible to get rid off the
redundant component:

Ĝ 7−→
(

0 Gav

Gret GK

)
, (2.1.29)

where, besides the usual retarded and advanced Green’s functions

Gret(1, 1′) = θ(t1 − t1′) [G>(1, 1′)−G<(1, 1′)] ,

Gav(1, 1′) = −θ(t1′ − t1) [G>(1, 1′)−G<(1, 1′)] , (2.1.30)

there is the Keldysh component defined by:

GK(1, 1′) = G>(1, 1′) + G<(1, 1′) (2.1.31)

which is central to the non-equilibrium formulation.
In condensed matter physics a representation in terms of trigonal matrices is

often used. To obtain this representation we first perform the transformation in
Keldysh space

Ǧ = τ3Ĝ (2.1.32)

followed by a rotation
G = RǦR† (2.1.33)

where

R =
1√
2
(1− iτ2), (2.1.34)

and τi (i = 1, 2, 3) are the Pauli matrices. Hence, we obtain for G:

G =

(
Gret GK

0 Gav

)
. (2.1.35)
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The advantage of these economical representations are the functions Gret and GK

appearing in its components, which contain distinctly physical relevant information:
the spectral function, related to Gret has the information about the quantum states
of a system, the energy spectrum, and the kinetic Green’s function, GK , has the
information about the occupation of these states for non-equilibrium situations.

Now, considering a system of interacting particles, perturbation theory in Hint

can be performed analogously to the equilibrium theory. The diagrammatic expan-
sion in the Keldysh formulation is similar to the standard Feynman representation.
The difference arises from the contour integration, which corresponds to a summa-
tion over the upper and lower branches at each internal vertex:

∫

c

dτ =

∞∫

−∞

dt −
∞∫

−∞

dt . (2.1.36)

Thus the right-hand Dyson equation becomes a matrix equation in Keldysh space

∫
d3x2

∞∫

−∞

dt2
[
G−1

0 (1, 2)− Σ(1, 2)
]
G(2, 1′) = δ(x1 − x1′)δ(t1 − t1′), (2.1.37)

and even more compact
∫

d2
[
G−1

0 (1, 2)− Σ(1, 2)
]
G(2, 1′) = δ(1− 1′). (2.1.38)

Here G−1
0 is the inverse matrix of the unperturbed Green’s function:

G−1
0 (1, 1′) =

[
i

∂

∂t1
− h0(1)

]
δ(1− 1′), (2.1.39)

and

Σ =

(
Σret ΣK

0 Σav

)
. (2.1.40)

consists of the usual retarded and advanced selfenergies

Σret(1, 1′) = θ(t1 − t1′) [Σ>(1, 1′)− Σ<(1, 1′)]

Σav(1, 1′) = −θ(t1′ − t1) [Σ>(1, 1′)− Σ<(1, 1′)] , (2.1.41)

and a Keldysh component

ΣK(1, 1′) = Σ>(1, 1′) + Σ<(1, 1′). (2.1.42)

In the same way one can get the left-hand or conjugate Dyson equation
∫

d2 G(1′, 2)
[(

G−1
0

)∗
(2, 1)− Σ(2, 1)

]
= δ(1′ − 1). (2.1.43)

25



Moreover, we observe that the lesser Green’s function G< is the most closely related
to the density matrix. We will make use of this fact in order to derive the Quantum

Boltzmann equation. Therefore we start considering the lesser component of the
right-hand Dyson equation (Eq. (2.1.38)) and its conjugate (Eq. (2.1.43)) and
substract them from each other:

[(
G−1

0

)∗
(1′)−G−1

0 (1)
]
G<(1, 1′) = I[g, Σ] (2.1.44)

with

I[g, Σ] =

∫
d2 [Gret(1, 2)Σ<(2, 1′) + G<(1, 2)Σav(2, 1′)

−Σret(1, 2)G<(2, 1′)− Σ<(1, 2)Gav(2, 1′)] (2.1.45)

as the inverse fourier transform of the collision Integral C(n) on the right-hand side
of the Boltzmann equation, as we will see. We also used, that

G−1
0 (1, 1′) = G−1

0 (1)δ(1− 1′)

=

[
i

∂

∂t1
− h0(1)

]
δ(1− 1′) (2.1.46)

in order to get rid off the integral on the lef-hand side of the equation.
The operator acting on G< on the left-hand side of Eq. (2.1.44) is

(
G−1

0

)∗
(1′)−G−1

0 (1) = −i

(
∂

∂t1
+

∂

∂t1′

)
− 1

2m
(△1 −△1′)

= −i

(
∂

∂T
− i

m
∇R · ∇r

)
. (2.1.47)

In the last line the Wigner transformation was performed, introducing the coordi-
nates

~R =
~x1 + ~x1′

2
, ~r = ~x1 − ~x1′ , (2.1.48)

and

T =
t1 + t1′

2
, t = t1 − t1′ . (2.1.49)

where T and ~R describe the macroscopic properties, governed by the non-equilibrium
features under consideration, and t and ~r describe the microscopic properties, gov-
erned by the characteristics of the system.

We have mentioned above that the lesser Green’s function is the most closely
related to the density matrix. Let us now specify this relation. For this purpose we
write the G< in terms of (T, ~R) and (t, ~r):

G<(1, 1′) = G<(T +
t

2
, ~R +

~r

2
; T − t

2
, ~R− ~r

2
)

≡ G<(T, ~R ; t, ~r), (2.1.50)
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and perform Fourier transformation with respect to t and ~r:

G<(T, ~R ; ω, ~p) =

∫
d3r dte−i(~x·~p−ωt)G<(T, ~R ; t, ~r). (2.1.51)

Then we get for the distribution function

n(T, ~R, ~p) = −i

∫
dω

2π
G<(T, ~R ; ω, ~p); (2.1.52)

the integration over dω/2π is equivalent to setting t = 0.
Now returning our attention to Eq. (2.1.44) we take the Fourier components

(2.1.51) on each side and put t = 0. Making use of the definition of the distribution
function (see Eq. (2.1.52)) we obtain

[
∂

∂T
+

~p

m
∇r

]
n(T, ~R, ~p) = C[n], (2.1.53)

where C[n] is the collision integral and is some functional of the distribution func-
tion. And from this equation we obtain the relation between C[n] and I[g, Σ].

In the comming Section we will apply the formalism derived here to a system of
weakly interacting bosons at zero temperature. This would be the non-equilibrium
extension of the theory presented in Chapter 1.

2.2 Weakly Interacting Bose Gas Out of Equili-

brium

In section 1.3 we presented the derivation of the Dyson equation for a system of
trapped interacting bosons at zero temperature in Bogoliubov-Hartree-Fock ap-
proximation. Due to the finite value of the order parameter, we found that the
off-diagonal elements of the Green’s function for the non-condensate particles do
not vanish. As a consequence, the Green’s function becomes a 2 × 2 matrix in
the so called Bogoliubov space, where the off-diagonal elements are the anomalous
Green’s functions. Since we want to study non-equilibrium features ot two coupled
Bose-Einstein condensates, we have to extend the theory presented in section 1.3
to the non-equilibrium case. What we basically do is to combine the Keldysh tech-
nique for systems out of equilibrium with the field theory for bosonic systems at
zero temperature.

Now we perform the derivation of the kinetic equations and its associated equa-
tions for the macroscopic wave functions. For this purpose we make use of the
approach suggested by J. W. Kane and L. P. Kadanoff in 1965 (see [36]), which
was developed with the specific goal of deriving the phenomenological two-fluid
hydrodynamical equations of Landau.
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Before we start with the derivation of the equations of motion for the two macro-
scopic condensate wave functions and the associated Quantum-Boltzmann equa-
tions for the non-condensate particles, we introduce the 2× 2 matrix single-particle
Green’s function

G(1, 1′) = −i

(
〈TcΨ(1)Ψ†(1′)〉 〈TcΨ(1)Ψ(1′)〉
〈TcΨ

†(1)Ψ†(1′)〉 〈TcΨ
†(1)Ψ(1′)〉

)
. (2.2.1)

where we used the short hand notation 1 ≡ (~x, t) and 1′ ≡ (~x′, t′). Here, as before,
Tc denotes the time ordering along the Keldysh contour. The real time response
functions G< and G> are given by

G<(1, 1′) = −i

(
〈Ψ†(1′)Ψ(1)〉 〈Ψ(1′)Ψ(1)〉
〈Ψ†(1′)Ψ†(1)〉 〈Ψ(1′)Ψ†(1)〉

)
(2.2.2)

and

G>(1, 1′) = −i

(
〈Ψ(1)Ψ†(1′)〉 〈Ψ(1)Ψ(1′)〉
〈Ψ†(1)Ψ†(1′)〉 〈Ψ†(1)Ψ(1′)〉

)
(2.2.3)

For a system consisting of bosons at zero temperature we have pointed out in
Chapter 1 that is more convenient to separate out the part of the field operator
corresponding to the condensed phase

Ψ(1) = Ψ0(1) + Ψ′(1), (2.2.4)

where Ψ0(1) = 〈Ψ(1)〉 is the macroscopic condensate wave function and Ψ′ is the an-
nihilation operator of the non-condensate particles. Now, using the decomposition
(2.2.4), the matrix propagator (2.2.1) splits into two parts

G(1, 1′) = G′(1, 1′) + C(1, 1′). (2.2.5)

Here is G′ identical to (2.2.1), except that it involves the non-condensate part of
the field operators, and the condensate part is given by

C(1, 1′) = −i

(
Ψ0(1)Ψ∗0(1

′) Ψ0(1)Ψ0(1
′)

Ψ∗0(1)Ψ∗0(1
′) Ψ∗0(1)Ψ0(1

′)

)
. (2.2.6)

In order to derive the system of self-consistent equations for the Green’s func-
tions, we consider the standard Heisenberg equations of motion for the field opera-
tors Ψ and Ψ† (

i
∂

∂t1
− h(1)

)
Ψ(1) = gΨ†(1)Ψ(1)Ψ(1) (2.2.7)

and (
−i

∂

∂t1
− h(1)

)
Ψ†(1) = gΨ†(x, t)Ψ†(1)Ψ(1), (2.2.8)
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where

h(1) = − 1

2m
△+ Vext − µ (2.2.9)

is the one particle Hamiltonian.
For the derivation of the equation for the macroscopic wave function we apply

the time ordering operator on the Keldysh contour Tc to both sides of Eq. (2.2.7)
and then take its average

(
i

∂

∂t1
− h(1)

)
〈TcΨ(1)〉 = g

〈
TcΨ(1)Ψ(1)Ψ†(1+)〉

〉
. (2.2.10)

We now can identify 〈TcΨ(1)〉 with the order parameter Ψ0(1). On the right hand
side of the equation we got the time ordered average on the Keldysh contour three
bosons field operators. We make use of the decomposition (2.2.4) and write for this
average

〈TcΨ(1)Ψ(1)Ψ†(1+)〉 = |Ψ0(1)|2Ψ0(1) + 2
〈
TcΨ

′(1)Ψ′†(1+)
〉
Ψ0(1) +

+ 〈Ψ′(1)Ψ′(1)〉Ψ∗0(1) +
〈
Ψ′(1)Ψ′(1)Ψ′†(1+)

〉
.

(2.2.11)

Here we used the fact, that the average over one field operator corresponding to the
non-condensate particles vanish. We include the average containing three operators
Ψ′, since it appears, as we have pointed out before, as a second order process and
is responsible for thermalization effects.

Inserting Eq. (2.2.11) in the equation for the order parameter (2.2.10), we obtain
the equation for the Green’s function C of the condensate particles

∫

c

d2
[
G−1

0 (1, 2)− SHF (1, 2)
]
C(2, 1′) =

∫

c

d2S(1, 2)C(2, 1′) (2.2.12)

where the time integration is performed along the Keldysh contour. Here the bare
2× 2 matrix propagator G0 for bosons is defined by

G−1
0 (1, 1′) =

[
iτ3

∂

∂t1
− h(1) + µ

]
1δ(1− 1′), (2.2.13)

where

τ3 =

(
1 0
0 −1

)
(2.2.14)

and 1 is the 2× 2 identity matrix. The first order perturbation theory is described
by the self-enegy matrix SHF in Hartree-Fock approximation

SHF (1, 1′) = ig

(
2G′<11(1, 1+) + C11(1, 1) G′<12(1, 1) + C12(1, 1)
G′<21(1, 1) + C21(1, 1) 2G′<11(1, 1+) + C11(1, 1)

)
δ(1− 1′)

(2.2.15)
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where G′<ij and Cij are the components of G′< and C, respectively. The second and
higher order contributions are involved in the selfenergy S.

Now we make use of the analytical continuation (see Appendix A) procedure in
order to obtain the real time version of Eq. (2.2.12)

∫
d2
[
G−1

0 (1, 2)− SHF (1, 2)
]
C(2, 1′) =

t1∫

−∞

d2 [S>(1, 2)− S<(1, 2)]C(2, 1′),

(2.2.16)
where the time integration without any boundaries extends now from t = −∞ to
t = ∞. Having now the equation of motion for the condensate Green’s function,
we can immediately write down the generalized Gross-Pitaevskii equation

[
i

∂

∂t1
+

1

2m
△− Vext + µ− g(n0(1)− 2n′(1))

]
Ψ0(1) = gm′(1)Ψ∗0(1)

+

t1∫

−∞

d2 [S>
11(1, 2)− S<

11(1, 2)] Ψ0(2) +

t1∫

−∞

d2 [S>
12(1, 2)− S<

12(1, 2)] Ψ∗0(2),

(2.2.17)

where n0(1) = |Ψ0(1)|2 and n′(1) = iG′<11(1, 1+) are the density of the condensate
phase and the density of the non-condensate particles, respectively. Moreover,

m′(1) = iG′<12(1, 1) (2.2.18)

is the anomalous density. As we have mentioned before, in order to describe the dy-
namics of the non-condensate particles, one needs to derive a quantum Boltzmann
equation for the distribution function of the excited particles. For this purpose we
derive the Dyson equations for the Bose propagator (2.2.1) from the equation of
motion for the Green’s function. Then we substract Eq. (2.2.12) from this equa-
tion and end up with the Dyson-Belayev equation for the non-condensate particle
propagator

∫

c

d2
[
G−1

0 (1, 2)−ΣHF (1, 2)
]
G′(2, 1′) = 1δ(1− 1′) +

∫

c

d2Σc(1, 2)G′(2, 1′).

(2.2.19)
where

ΣHF (1, 1′) = ig

(
2[G′<11(1, 1+) + C11(1, 1)] G′<12(1, 1) + C12(1, 1)

G′<21(1, 1) + C21(1, 1) 2[G′<11(1, 1+) + C11(1, 1)]

)
δ(1− 1′)

(2.2.20)
is the lowest order contribution described in Bogoliubov-Hartree-Fock approxima-
tion, and Σc involves the second order and higher order processes and where the
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index c refers to the collisions. We also recall that the single particle selfenergy
which is involved in Eq. (2.2.19) has been split into two parts [33]

Σ(1, 1′) = Σc(1, 1
′) + ΣHF (1, 1′). (2.2.21)

We now treat the right hand side of Eq. (2.2.19) like above and make use of
the analytical continuation proceedure, with the goal to end up with its real time
version

∫
d2
[
G−1

0 (1, 2)−ΣHF (1, 2)
]
G′≷(2, 1′)

=

t1∫

−∞

d2Γ(1, 2)G′≷(2, 1′)−
t1′∫

−∞

d2Σ≷
c (1, 2)A(2, 1′) (2.2.22)

and its hermitian conjugated
∫

d2G′≷(1, 2)
[(

G−1
0

)∗
(2, 1′)−ΣHF (2, 1′)

]

=

t1∫

−∞

d2A(1, 2)Σ≷
c (2, 1′)−

t1′∫

−∞

d2G′≷(1, 2)Γ(2, 1′), (2.2.23)

where we have introduced the spectral weight function

A(1, 1′) = G′>(1, 1′)−G′<(1, 1′) (2.2.24)

and similarly for the self-enegy

Γ(1, 1′) = Σ>(1, 1′)−Σ<(1, 1′). (2.2.25)

We have thus obtained the nonequilibrium form of the Dyson-Beliaev equations of
motion for the non-condensate particles. These equations are the starting point for
the computation of the quantum Boltzmann equations. For the derivation we first
write down the ”11” and ”12” components of Eq. (2.2.22) and Eq. (2.2.23)

[
i

∂

∂t1
− h(1)

]
G′<11(1, 1

′) = ΣHF
11 (1)G′<11(1, 1

′) + ΣHF
12 (1)G′<21(1, 1

′)

+

t1∫

−∞

d2 [Γ11(1, 2)G′<11(2, 1
′) + Γ12(1, 2)G′<21(2, 1

′)]

−
t1′∫

−∞

d2 [Σc<
11 (1, 2)A11(2, 1

′) + Σc<
12 (1, 2)A21(2, 1

′)] , (2.2.26)
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[
i

∂

∂t1
− h(1)

]
G′<12(1, 1

′) = ΣHF
11 (1)G′<12(1, 1

′) + ΣHF
12 (1)G′<22(1, 1

′)

+

t1∫

−∞

d2 [Γ11(1, 2)G′<12(2, 1
′) + Γ12(1, 2)G′<22(2, 1

′)]

−
t1′∫

−∞

d2 [Σc<
11 (1, 2)A12(2, 1

′) + Σc<
12 (1, 2)A22(2, 1

′)] , (2.2.27)

and
[
−i

∂

∂t1′
− h(1′)

]
G′<11(1, 1

′) = ΣHF
11 (1′)G′<11(1, 1

′) + ΣHF
21 (1′)G′<12(1, 1

′)

−
t1′∫

−∞

d2 [G′<11(1, 2)Γ11(2, 1
′) + G′<12(1, 2)Γ21(2, 1

′)]

+

t1∫

−∞

d2 [A11(1, 2)Σc<
11 (2, 1′) + A12(1, 2)Σc<

21 (2, 1′)] , (2.2.28)

[
i

∂

∂t1′
− h(1′)

]
G′<12(1, 1

′) = ΣHF
22 (1′)G′<12(1, 1

′) + ΣHF
12 (1′)G′<11(1, 1

′)

−
t1′∫

−∞

d2 [G′<12(1, 2)Γ22(2, 1
′) + G′<11(1, 2)Γ12(2, 1

′)]

+

t1∫

−∞

d2 [A11(1, 2)Σc<
12 (2, 1′) + A12(1, 2)Σc<

22 (2, 1′)] . (2.2.29)

The equations for the greater component of the Bose propagator take the same form
except that > appears instead of < as superscript.

The equations of motion (2.2.26)-(2.2.29) are formally exact and can be used
to derive a generalized Boltzmann equation. For this purpose we use the Wigner
transformation introduced in Eq. (2.1.48) and Eq. (2.1.49) in order to separate
the variables, (~r, t), describing the microscopic properties of the system, from the

variables, (~R, T ), describing the macroscopic properties. For the derivation of the
Boltzmann equations, one needs to rewrite the equations for the real time non-
equilibrium Green’s functions G<

11 and G<
12 in the Wigner representation. To this
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end, we first substract Eq. (2.2.28) from Eq. (2.2.26)

[
i

(
∂

∂t1
+

∂

∂t1′

)
− (h(1)− h(1′))−

(
ΣHF

11 (1)− ΣHF
11 (1′)

)]
G′<11(1, 1

′)

= ΣHF
12 (1)G′<21(1, 1

′)− ΣHF
21 (1′)G′<12(1, 1

′)

+

t1∫

−∞

d2 [Γ11(1, 2)G′<11(2, 1
′)− A11(1, 2)Σc<

11 (2, 1′)]

+

t1∫

−∞

d2 [Γ12(1, 2)G′<21(2, 1
′)− A12(1, 2)Σc<

21 (2, 1′)]

+

t1′∫

−∞

d2 [G′<12(1, 2)Γ21(2, 1
′)− Σc<

12 (1, 2)A21(2, 1
′)]

+

t1′∫

−∞

d2 [G′<11(1, 2)Γ11(2, 1
′)− Σc<

11 (1, 2)A11(2, 1
′)] (2.2.30)

and then take the sum of Eq. (2.2.27) and Eq. (2.2.29)

[
i

(
∂

∂t1
+

∂

∂t1′

)
− (h(1) + h(1′))−

(
ΣHF

11 (1) + ΣHF
22 (1′)

)]
G′<12(1, 1

′)

= ΣHF
12 (1)G′<22(1, 1

′) + ΣHF
12 (1′)G′<11(1, 1

′)

+

t1∫

−∞

d2 [Γ11(1, 2)G′<12(2, 1
′) + A12(1, 2)Σc<

22 (2, 1′)]

+

t1∫

−∞

d2 [Γ12(1, 2)G′<22(2, 1
′) + A11(1, 2)Σc<

12 (2, 1′)]

−
t1′∫

−∞

d2 [G′<12(1, 2)Γ22(2, 1
′) + Σc<

11 (1, 2)A12(2, 1
′)]

−
t1′∫

−∞

d2 [G′<11(1, 2)Γ12(2, 1
′) + Σc<

12 (1, 2)A22(2, 1
′)] (2.2.31)

Now we turn our attention to the left hand side of Eq. (2.2.30) and Eq. (2.2.31)

and express them in terms of the center of mass coordinates (~R, T ) and the relative
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coordinates (~r, t)

[
i

∂

∂T
+
∇R · ∇r

m
−
[(

~r · ∇R + t
∂

∂T

)(
Vext (~R, T ) + ΣHF

11 (~R, t)
)]]

G′<11(~r, t; ~R, T )

(2.2.32)
and

[
i

∂

∂T
+
△R

4m
+
△r

m
− 2Vext(~R, T )− 2ΣHF

11 (~R, t)

]
G′<12(~r, t; ~R, T ) (2.2.33)

where we used the fact that G′<ij (1, 1′) ≡ G′<ij (~r, t; ~R, T ). Further we made the
assumption, that under the non-equilibrium perturbation G′<ij (1, 1′) and G′>ij (1, 1′)

are slowly varying functions of the coordinates (~R, T ) but sharply peaked about
the zero values of (~r, t). Thus the Hartree-Fock contribution of the selfenergy ΣHF

ij

and the trapping potential Vext depend only on small values of (~r, t), and we can
therefore expand them in powers of ~r and t, keeping only the linear term. This is
a suitable approximation for the low density limit, which is case we study in this
thesis (see also [33]).

From now on we replace the integrals appearing on the right hand side of Eq.
(2.2.30) and Eq. (2.2.31) by the functions I<

11 and I<
12, respectively. Here the

superscript means, that the quantities appearing in the integral are lesser quantities.
Each of these functions depends on the coordinates 1 and 1′. For a more detailed
discussion of these integrals see Appendix B. Further we should keep in mind that
each of these functions can be decomposed into two terms; one describing collisions
between non-condensate particles and other describing between condensate and
non-condensate particles. Hence, Eq. (2.2.30) and Eq. (2.2.31) become

[
i

∂

∂T
+
∇R · ∇r

m
−
[(

~r · ∇R + t
∂

∂T

)(
Vext (~R, T ) + ΣHF

11 (~R, T )
)]]

G′<11(~r, t; ~R, T )

= ΣHF
12 (~R, T )G′<21(~r, t; ~R, T )− ΣHF

21 (~R, T )G′<12(~r, t; ~R, T )

+
1

2

[
G′<21(~r, t; ~R, T )

(
~r · ∇R + t

∂

∂T

)
ΣHF

12 (~R, T )+

+ G′<12(~r, t; ~R, T )

(
~r · ∇R + t

∂

∂T

)
ΣHF

21 (~R, T )

]

+ I<
11(~r, t; ~R, T ), (2.2.34)
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[
i

∂

∂T
+
△R

4m
+
△r

m
− 2Vext(~R, T )− 2ΣHF

11 (~R, t)

]
G′<12(~r, t; ~R, T )

= ΣHF
12 (~R, T )G′<22(~r, t;

~R, T ) + ΣHF
12 (~R, T )G′<11(~r, t;

~R, T )

+
1

2

[
G′<22(~r, t; ~R, T )

(
~r · ∇R + t

∂

∂T

)
ΣHF

12 (~R, T )+

−G′<11(~r, t; ~R, T )

(
~r · ∇R + t

∂

∂T

)
ΣHF

12 (~R, T )

]

+ I<
12(~r, t; ~R, T ) (2.2.35)

respectively. Here we expanded the Hartree-Fock self-energies on the right hand
side of the equation in powers of ~r and t, and kept only the linear terms.

In section 2.1.3 we mentioned that the lesser Green’s function is the most closely
related to the density matrix. We also specified its relation to the distribution func-
tion (see Eq. (2.1.52)). Now in order to derive the quantum Boltzmann equation,
we perform the Fourier transform of Eq. (2.2.34) and (2.2.35)

[
∂

∂T
+

~p · ∇R

m
−∇RUeff(~R, t) · ∇p +

∂Ueff(~R, t)

∂T

∂

∂ω

]
G′<11(~p, ω; ~R, T )

= −i
[
ΣHF

12 (~R, T )G′<21(~p, ω; ~R, T )− ΣHF
21 (~R, T )G′<12(~p, ω; ~R, T )

]

+
1

2

[(
∇RΣHF

12 (~R, T ) · ∇p −
∂ΣHF

12 (~R, T )

∂T

∂

∂ω

)
G′<21(~p, ω; ~R, T )+

+

(
∇RΣHF

21 (~R, T ) · ∇p −
∂ΣHF

21 (~R, T )

∂T

∂

∂ω

)
G′<12(~p, ω; ~R, T )

]

− iI<
11(~p, ω; ~R, T ), (2.2.36)

[
∂

∂T
+ i2ξp(~R, T ) +

△R

4m

]
G′<12(~p, ω; ~R, T )

= −iΣHF
12 (~R, T )

[
G′<22(~p, ω; ~R, T ) + G′<11(~p, ω; ~R, T )

]

+
1

2

(
∇RΣHF

12 (~R, T ) · ∇p −
∂ΣHF

12 (~R, T )

∂T

∂

∂ω

)
(G′<22 −G′<11)(~p, ω; ~R, T )

− iI<
12(~p, ω; ~R, T ). (2.2.37)

Here we introduced

Ueff(~R, T ) = Vext(~R, T ) + ΣHF
11 (~R, t) (2.2.38)

as the effective self-consistent Hartree-Fock dynamic mean field, and

ξp(~R, T ) =
|~p|2
2m

+ Ueff(~R, T )− µ (2.2.39)
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as the ”normal” single-particle energy. Further the Fourier components of the lesser
Green’s function appearing in the equations are given by

G′<ij (~r, t; ~R, T ) =

∫
d3p

(2π)3

dω

2π
ei(~r·~p−ωt)G′<ij (~p, ω; ~R, T ). (2.2.40)

Morever, the term proportional to the second derivative with respect to ~R can be
neglected, since we have assumed before that the Green’s functions slowly vary in
space and time.

These are the equations of motion for the non-condensate particles. Now we
turn our attention to their associated equation for the macroscopic condensate wave
function (see Eq. 2.2.17). We are now interested in the integrals of the form

t1∫

−∞

d2 [S>
11(1, 2)− S<

11(1, 2)] Ψ0(2)

=

t1∫

−∞

d2 [S>
11 − S<

11] (~r1 − ~r2, t1 − t2; (~r1 + ~r2)/2, (t1 + t2)/2)Ψ0(~r2, t2). (2.2.41)

We assume, that S11 is dominated by small values of the relative coordinates (~r1 −
~r2, t1− t2), and therefore we can approximate S≶

11 by S≶
11(~r1− ~r2, t1− t2;~r1, t1). For

the same reason, we approximate the macroscopic wave function in Eq. (2.2.41) by

Ψ0(~r2, t2) ≈ Ψ0(~r1, t1). Hence we get (renaming (~r1, t1)→ (~R, T ))

[
i

∂

∂T
+

1

2m
△R − Vext + µ− g(n0(~R, T ) + 2n′(~R, T ))

]
Ψ0(~R, T )

= gm′(~R, T )Ψ∗0(~R, T ) + Ψ0(~R, T )

T∫

−∞

d2 [S>
11 − S<

11] (~R− ~r2, T − t2; ~R, T )

+ Ψ∗0(
~R, T )

T∫

−∞

d2 [S>
12 − S<

12] (~r1 − ~r2, t1 − t2;~r1, t1) (2.2.42)

where the term containing the integrals over S≷
12 was treated in the same manner

as the one containing S≷
11. This is the generalized Gross-Pitaevskii equation. The

appearance of these two dissipative terms in Eq. (2.2.42) is expected, since the I≷
12

collisions can change the number of atoms in the condensate and hence modify the
magnitude of the condensate macroscopic wave function.
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2.2.1 Hartree-Fock approximation and the collisionless Boltz-

mann Equation

Up to now we have derived the kinetic equations and its associated equation of mo-
tion for the macroscopic wave function for a system of bosons at zero temperature.
We have included higher order terms, that cause thermalization. In this section
we study the collisionless case, and derive for it the quantum Boltzmann equa-
tion. For this reason we take the collision integrals I≷

11 and I≷
12 out of consideration.

Furthermore, the Bogoliubov-Hartree-Fock selfenergies, which are the self-enegies
of interest now, are frequency independent (see [33, 43]). Thus it is sufficient to
consider t = 0 in Eq. (2.2.34) and Eq. (2.2.35)
[
i

∂

∂T
+
∇R · ∇r

m
− ~r · ∇R

(
Vext (~R, T ) + ΣHF

11 (~R, T )
)]

G′<11(~r; ~R, T )

= ΣHF
12 (~R, T )G′<21(~r;

~R, T )− ΣHF
21 (~R, T )G′<12(~r;

~R, T )

+
1

2

[
G′<21(~r; ~R, T )~r · ∇RΣHF

12 (~R, T ) + G′<12(~r; ~R, T )~r · ∇RΣHF
21 (~R, T )

]
, (2.2.43)

[
i

∂

∂T
+
△R

4m
+
△r

m
− 2Vext(~R, T )− 2ΣHF

11 (~R, t)

]
G′<12(~r; ~R, T )

= ΣHF
12 (~R, T )G′<22(~r; ~R, T ) + ΣHF

12 (~R, T )G′<11(~r; ~R, T )

+
1

2

[
G′<22(~r;

~R, T )~r · ∇RΣHF
12 (~R, T )−G′<11(~r;

~R, T )~r · ∇RΣHF
12 (~R, T )

]
. (2.2.44)

Then we make use of the fact that the lesser Green’s functions are connected
with the single-particle distribution function f1(~p, ~R, T ). We therefore define

f1(~p, ~R, T ) =

∞∫

−∞

dω

2π
iG′<11(~p, ω; ~R, T ). (2.2.45)

By definition, the non-condensate particles density is given by

n′(~R, T ) =

∫
d3p

(2π)3
f1(~p, ~R, T ). (2.2.46)

We can see that f1(~p, ~R, T ) corresponds to the well known Wigner distribution
function. Due to the finite value of the order parameter the off-diagonal elements of
the single-boson propagator do not vanish. Since the anomalous Green’s functions
have a non zero value, it is natural to introduce an additional distribution for the
non-condensate atoms which will give us the anomalous non-condensate particles
density m′(~R, T ), namely

f2(~p, ~R, T ) =

∞∫

−∞

dω

2π
iG′<12(~p, ω; ~R, T ) (2.2.47)
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with the corresponding anomalous density

m′(~R, T ) =

∫
d3p

(2π)3
f2(~p, ~R, T ). (2.2.48)

It is important to mention that, as defined, the distribution functions f1 and
f2 describe the behavior of the particles. They should not be confused with the
distribution function for the quasiparticle excitations.

Now, taking the Fourier transform of Eq. (2.2.43) and Eq. (2.2.44) and using
the definition of the distribution function, we obtain

[
∂

∂T
+

~p · ∇R

m
−∇RUeff(~R, T ) · ∇p

]
f1(~p, ~R, T )

= −i
[
ΣHF

12 (~R, T )f ∗2 (−~p, ~R, T )− ΣHF
21 (~R, T )f2(~p, ~R, T )

]

+
1

2

[
∇RΣHF

12 (~R, T ) · ∇pf
∗
2 (−~p, ~R, T ) +∇RΣHF

21 (~R, T ) · ∇pf2(~p, ~R, T )

]
,

(2.2.49)
[

∂

∂T
+ i2ξp(~R, T )

]
f2(~p, ~R, T )

= −iΣHF
12 (~R, T )

[
f1(~p, ~R, T ) + f1(−~p, ~R, T ) + 1

]

+
1

2
∇RΣHF

12 (~R, T ) · ∇p

(
f1(~p, ~R, T )− f1(−~p, ~R, T )

)
, (2.2.50)

where Ueff and ξp(~R, T ) were defined in Eq. (2.2.38) and Eq. (2.2.39), respectively.
These are the Bogoliubov-Hartree-Fock collisionless kinetic equations for the case
that the Green’s function vary slowly in time and space.

On the other hand, the equation of motion for the order parameter is given by

[
i

∂

∂T
+

1

2m
△R − Vext + µ− g (n0 + 2n′) (~R, T )

]
Ψ0(~R, T ) = gm′(~R, T )Ψ∗0(~R, T ).

(2.2.51)
This equation is exact within the Bogoliubov-Hartree-Fock approximation, i.e. it is
not limited to slowly varying disturbances.
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Chapter 3

Quantum Coherent Particle

Tunneling between Two Trapped

Bose-Einstein Condensates

Manipulations with two trapped condensates provide a fascinating possibility to ob-
serve of new quantum phenomena on macroscopic scales, related to the superfluid
phase of the condensate. A far off-resonant intense laser sheet divided a trapped
condensate, creating a high barrier in between. Switching off the double well trap,
the two released condensates overlapp, producing a robust two-slit atomic inter-
ference pattern, clear signature of phase coherence over a macroscopic scale. The
non-destructive detection of phase differences between two trapped Bose-Einstein
condensates could be achieved by lowering the intensity of the laser sheet [15]. This
allows atomic tunneling through the barrier, and the detection of Josephson-like
current-phase effects, which are going to be the subject of study of this chapter.

In the preceeding chapters we presented the theory for a system consisting of
bosons at zero temperature and its non-equilibrium extension. Before we can study
the non-adiabatic mixing of two trapped Bose-Einstein condensates, making use of
these two techniques, we have to understand what happens in the meanfield regime,
when we replace the boson field operator by its expectation value.

3.1 Two-Mode Approximation

We start with a system consisting of two Bose gases confined in a double well
potential at zero temperature (see Fig 3.1). A coherent oscillating particle tunneling
between the wells is induced. This can be understood as a macroscopic superposition
of all possible particle states. As we have shown in Section 1.1 the particle number
(or density) and the macroscopic phase are canonically conjugated. If we start an
experiment with two condensates that are independent from each other, each of
them would have a definite particle number and their macroscopic phase would be
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a superposition of all phases between 0 to 2π. Then after we link the condensates, a
particle flux between the condensates sets in and we can measure the relative phase
difference between the condensates. The dynamics of such a system is well described
by two coupled Gross-Pitaevskii equations for the condensate amplitudes. The
coupling element is a transfer matrix, which we identify with Josephson Coupling.

Condensate 2Condensate 1

Figure 3.1: The double well trap with the two Bose-Einstein condensates and the
Josephson tunneling between them. Here we only display the linear particle tun-
neling

In order to derive the equations of motion we consider the Hamiltonian (1.0.3),
which describes a weakly interacting Bose gas and replace the operator Ψ by its
expectation value Ψ0 = 〈Ψ(~x, t)〉. Further we assume that the barrier separating
the condensates is sufficiently high such that the number of particles in it is expo-
nentially suppressed. We can thus decompose the condensate amplitude Ψ0 into
two orthogonal modes, describing each condensate:

Ψ0(~x, t) = a1(t)φ1(~x) + a2(t)φ2(~x) (3.1.1)

where φ1 and φ2 are the solutions of the time-independent Gross-Pitaevkii equations
for each well and are assumed to be real. This decomposition is called the two-

mode approximation (see also [27, 31, 30]). Now plugging this decomposition in the
Hamiltonian (1.0.3) we obtain

H = (E − µ)(a∗1a1 + a∗2a2)−
J

2
(a∗1a2 + a∗2a1) +

+
T0

2
(a∗1a1a

∗
1a1 + a∗2a2a

∗
2a2) + 2T2a

∗
1a1a

∗
2a2 +

T2

2
(a∗1a2a

∗
1a2 + a∗2a1a

∗
2a1)

+ T1(a
∗
1a1a

∗
1a2 + a∗1a1a

∗
2a1 + a∗2a2a

∗
2a1 + a∗2a2a

∗
1a2) (3.1.2)
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with the following parameters

E =

∫
d3xφi

(
− 1

2m
△+ Vext(x, t)

)
φi, for i = 1, 2 (3.1.3)

as the lowest state of energy1,

J = −2

∫
d3xφj

(
− 1

2m
△+ Vext(x, t)

)
φi, for i 6= j = 1, 2 (3.1.4)

as the Josephson coupling element,

T1 = g

∫
d3x (φ1)

3φ2 = g

∫
d3x (φ2)

3φ1 (3.1.5)

and

T2 = g

∫
d3x (φ1)

2(φ2)
2 (3.1.6)

as overlap integrals, and

T0 = g

∫
d3x (φ1)

4 = g

∫
d3x (φ2)

4 (3.1.7)

as the integral corresponding to the intrawell interatomic interactions. After some
algebra we can rewrite the expression (3.1.2) as follows

H = (E − µ)(a∗1a1 + a∗2a2)−
J

2
(a∗1a2 + a∗2a1) +

+
T0

4
(a∗1a1 + a∗2a2)

2 +
T0

4
(a∗1a1 − a∗2a2)

2 + T2a
∗
1a1a

∗
2a2 +

T2

2
(a∗1a2 + a∗2a1)

2

+T1(a
∗
1a1 + a∗2a2) · (a∗2a1 + a∗1a2). (3.1.8)

We have thus

H = (E − µ)(a∗1a1 + a∗2a2)−
[
J

2
− T1(a

∗
1a1 + a∗2a2)

]
(a∗1a2 + a∗2a1) +

+
T2

2
(a∗1a2 + a∗2a1)

2 +
T0 + 2T2

4
(a∗1a1 + a∗2a2)

2 +
T0 − 2T2

4
(a∗1a1 − a∗2a2)

2.

(3.1.9)

In Section 1.1 we showed that the condensate amplitude can be written in terms
of the particle number and the macroscopic phase (see Eq. (1.1.6)). We now make

1The lowest state of energy E is equal for both wells, since we are considering a symmetric
trap
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use of this fact and replace aj by
√

Nje
iθj in the Hamiltonian (3.1.9), so that we

obtain

H = (E − µ)N0 +
T0 + 2T2

4
N2

0 − [J − 2T1N0]
√

N2
0 − z2 cos θ +

+2T2 cos2 θ +
T0 − 2T2

4
z2 (3.1.10)

where we introduce the total particle number

N0 = N1 + N2, (3.1.11)

the particle imbalance
z = N1 −N2 (3.1.12)

between the two condensates and the relative phase difference

θ = θ2 − θ1. (3.1.13)

Notice that the total particle number N0 is constant. In the following we assume,
that:

• lowest energy E is equal to µ.

• although N0 is a huge number, the term proportional to 2T1N0 can be ne-
glected, since T1 is very small and considered values for the Josephson coupling
J are much larger than T1N0.

• we take the nonlinear tunneling represented by the term proportional to cos2 θ
out of consideration, since it displays the same physics as the linear one.

• since N0 is a conserved quantity, we can get rid off the remaining terms con-
taining N0 by performing a rotation of the a’s.

• T2 is negligibly small with respect to T0.

After these simplifications we end up with the following simple Hamiltonian, which
describes a canonical Josephson junction

H = −J
√

N2
0 − z2 cos θ +

T0

4
z2. (3.1.14)

For convenience, we express the energy in terms of the total particle number N0

and the Josephson coupling J :

H ≡
(

H

JN0

)
=
√

1− z2 cos θ +
U

2
z2, (3.1.15)
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where the particle imbalance z has been renormalized to the total particle number

z 7→ z =
N1 −N2

N0

(3.1.16)

and U is defined as

U =
T0N0

2J
. (3.1.17)

We observe, that the normalized particle imbalance z and the relative phase dif-
ference θ are canonically conjugated. The equations of motion can be computed
straightforward from

ż = −∂H

∂θ
and θ̇ =

∂H

∂z
(3.1.18)

and the result is (see also [27])

ż(t) = −
√

1− z2(t) sin θ(t), (3.1.19)

θ̇(t) = Uz +
z(t)√

1− z2(t)
cos θ(t). (3.1.20)

In a simple mechanical analogy, this system of coupled differential equations de-
scribes a nonrigid pendulum, of tilt angle θ and length proportional to

√
1− z2,

that decreases with the ”angular momentum” z.
The Bose Josephson junction intertrap tunneling is given by

I = żN0 = J
√

1− z2 sin θ (3.1.21)

with J as the Josephson coupling. Here we notice that Eq. (3.1.21) differs from
Cooper-pair superconductor Josephson junction tunneling current in its nonlinearity
in z. Thus the equations for θ̈ also differ. The detailed analysis of Eqs. (3.1.19)
and (3.1.20) with exact analytical solutions in terms of Jacobian and Weierstrassian
elliptic functions is presented in [29]. Here we consider three different regimes.

1. Noninteracting limit

In this limit we consider negligibly small interatomic interaction (U → 0).
Rabi-like oscillations in the population of each trap with the frequency

ωR = J (3.1.22)

are displayed by Eqs. (3.1.19) and (3.1.20). These oscillations are equivalent
to a single-atom dynamics, rather than a Josephson effect arising from the
interacting superfluid condensate.

2. Linear regime

In this regime we consider small amplitude oscillations, i.e.

|z| ≪ 1 |θ| ≪ 1. (3.1.23)
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The Eqs. (3.1.19) and (3.1.20) hence simplify as follows

ż ≃ −θ (3.1.24)

θ̇ ≃ (U + 1)z. (3.1.25)

These set of coupled differential equations describe the small amplitude oscil-
lations of the pendulum analog, with a sinusoidal z(t) with the frequency

ωL =

√
T0N0J

2
+ J2. (3.1.26)

Here one should keep in mind that the energies above were given in terms
of the Josephson coupling J . Moreover, we observe that the Bose Josephson
junction oscillations of the population should show up as temporal oscillations
of phase-contrast patterns.

Further, in order to justify the neglection of the spatial variations of z and θ
we assume that the Josephson-like length

λJ ≡
1√

2mJ
(3.1.27)

which governs the spatial variation along the junction, should be much larger
than the length characterized by the junction area.

3. Nonlinear regime

Numerical solutions of the Eqs. (3.1.19) and (3.1.20) yield a non-sinusoidal
behavior of the particle imbalance, that can be understood as the anhar-
monic generalization of the sinusoidal Josephson effects. This anharmonicity
can be achieved by increasing the initial particle imbalance z(0) for a fixed
interatomic interaction U (or increasing U for a fixed z(0)). This behavior
corresponds to the large amplitude oscillations of the nonrigid pendulum. In
Fig. (3.2) we display how the anharmonic behavior increases with U for a
fixed z(0).

In addition to anharmonic and critical slow oscillations other striking effects
occur in Bose Josephson junction. For instance, for a fixed value of the initial
particle imbalance z(0), if the selfinteraction parameter U exceeds a critical
value Uc, the populations become macroscopically selftrapped with

〈z(t)〉 6= 0. (3.1.28)

This phenomenon can be understood through the pendulum analogy. If the
population imbalances are prepared such that the initial angular kinetic energy
z(0)2 exceeds the potential barrier height of the vertically displaced θ = π
”pendulum orientation”, a steady self sustained pendulum rotation will occur,
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Figure 3.2: z(t) as a function of J · t with initial conditions z(0) = 0.6 and θ(0) = 0
in a symmetric trap. The red line at the bottom displays the selftrapping behavior.

with nonzero angular momentum 〈z〉 and a closed loop trajectory around the
pendulum support.

This analogy will help us to formulate an expression for the critical value of
the selfinteractions parameter Uc. For this porpuse we make use of the fact,
that the total energy of the system is constant and observe that the system
can only be macroscopically selftrapped if its energy is larger than the hopping
energy, i.e. larger than the energy corresponding to the Josephson junction
effect (see also [27]):

H0 ≡ H(z(0), θ(0)) =
√

1− z(0)2 cos(θ(0)) +
U

2
z(0)2 > 1. (3.1.29)

Here the energy is given in terms of the Josephson coupling J . In this manner
we can equivalently formulate the condition for macroscopically selftrapping
in terms of the selfinteractions parameter:

U > Uc =
1 +

√
1− z(0)2 cos(θ(0))

z(0)2/2
. (3.1.30)

The macroscopic selftrapping for increasing U and fixed z(0) is shown in
Fig. (3.2). The experimental observation of this behavior involves a series
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of experiments in which θ(0) and z(0) are kept constant but U is varied by
changing the geometry or the total number of condensate atoms, for example
[15, 14].

On the other hand, changing the initial value of the population imbalance
z(0) with a fixed trap geometry, total number of condensate atoms and initial
relative phase difference θ(0), U remains constant and Eq. (3.1.29) defines a
critical initial population imbalance zc. For θ(0) = 0, if z(0) < zc, macroscopic
quantum self-trapping sets in. For θ(0) = π the dynamics are presented
elsewhere [27]. In this thesis we will concentrate on the dynamics for θ(0) = 0.
In Fig. 3.3 we show how the particle imbalance z(t) as a function of the time
Jt changes with in increasing initial particle imbalance z(0).
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Figure 3.3: z(t) as a function of Jt for a fixed selfinteraction parameter U = 10 and
θ(0) = 0 in a symmetric trap. The red line at the bottom displays the selftrapping
behavior.

The dynamical behavior of the Bose Josephson junction system can be summarized
quite conveniently in terms of a phase portrait of the two dynamical variables
z and θ, as shown in Fig. 3.4. At the top the trajectories are calculated for
different selfinteraction parameter U with z(0) kept constant at 0.6. The closed
lines (black, dark green and maroon) display the evolution of the system, where
the phase θ and particle imbalance z oscillate around 0. This corresponds to the
case when the system is governed by the Josephson energy and, hence, one observes
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Bose Josephson oscillations. Then increasing U (by changing the geometry of the
trap or the total number of particles) the system undergoes a transition to the
selftrapping regime. The blue line shows the critical behavior and the red line
displays a macroscopically selftrapped system. The figure at the bottom displays a
similar behavior for fixed U and changing z(0).
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Figure 3.4: Phases-pace portrait of the dynamical variables z and θ for fixed initial
particle imbalance z(0) = 0.6 and different selfinteraction parameter U at the top
and for fixed U = 10 and different z(0) at the bottom.
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Chapter 4

Non-Adiabatic Mixing of trapped

Bose Gases at Zero Temperature

In chapter 3 we presented the two-mode model for the description of the coherent
particle tunneling between two trapped Bose-Einstein condensates. The theory
presented allows the investigation of the two different dynamical phenomena known
for a system consisting of two Bose-Einstein condensates confined in a double well
trap at zero temperature - Josephson oscillations and selftrapping. We considered
the limit of a large number of condensed particles in the semiclassical or mean

field approximation. In this chapter we will include the single particle excitations,
which will deliver the corrections to the set of coupled Gross-Pitaevskii equations.
Moreover we assume that the linking of the two trapped Bose gases happens in a
non-adiabatic way and evokes therefore nonequilibrium features, that have to be
analyzed with the tools presented in chapter 2.1.

4.1 Microscopic derivation of the Hamiltonian

Consider the most general Hamiltonian (1.0.3) describing a dilute Bose gas. Now we
consider two Bose gases confined in a double well potential Vext at zero temperature
(see Fig. (3.1)). As we have done before, we assume that the barrier in the middle
separating the two gases is high enough, so that the number of particles in it is
exponentially suppressed. We can therefore decompose, like in Chapter 3, the order
parameter into two modes that are orthogonal to each other. Moreover, since we
want to include the corrections to the Gross-Pitaevskii equations, we include the
single particle excitations of the system. Hence the bosonic field operator becomes

Ψ(~x, t) = Ψ1(~x, t) + Ψ2(~x, t)︸ ︷︷ ︸ + Ψ′(~x, t)

Ψ0(~x, t)
(4.1.1)

where Ψ0(~x, t) = 〈Ψ(~x, t)〉 is the order parameter, which is decomposed in two
orthogonal modes, Ψ1 and Ψ2 corresponding to the two condensates, and Ψ′ is the
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bosonic field operator corresponding to the single particle excitations. Here Ψ′ is
not decomposed in two states orthogonal to each other, because we have assumed,
that the energy corresponding to the lowest single particle excitation state of each
well is higher than the barrier in the middle separating the two gases. It is therefore
a good approximation to consider ”only one spectrum” of single particle excitations
corresponding to both wells. One of the possible experimental realizations of a
double well confining trap involves the combination of a three dimensional harmonic
confinement and a one dimensional periodic potential with a large lattice spacing
[15]. We can therefore take the spectrum of the single particle excitations equal to
the one corresponding to the harmonic confinement. This idea is presented in Fig.
4.1.

condensate 1 condensate 2

Figure 4.1: Double well potential as a result of a combination of a three dimensional
harmonic confinement and a one dimensional periodic potential with large lattice
spacing. The energy spectrum showed belongs to harmonic confinement and is
assumed to coincide with the spectrum of the single particle excitations of both
wells

Now we proceed in similar way like in chapter 3 and separate the space depen-
dence from the time dependence

Ψ(~x, t) = φ1(~x)a1(t) + φ2(~x)a2(t) +
∑

n6=0

ϕn(~x)bn(t) (4.1.2)

and
Ψ†(~x, t) = φ1(~x)a∗1(t) + φ2(~x)a∗2(t) +

∑

n6=0

ϕn(~x)b†n(t), (4.1.3)

where φ1, φ2 and ϕn are assumed to be real, a1 and a2 are complex functions and
bn are bosonic field operators corresponding to the one particles excitations.

49



Now making use of the ansatz’s (4.1.2) and (4.1.3) and plugging them in the
Hamiltonian (1.0.3) we obtain

H = Haa + Hab (4.1.4)

where Haa is the Hamiltonian (3.1.9) computed in Chapter 3 in the ”semiclassical”
two-mode approximation and Hab contains all the terms involving the operators bn

corresponding to the single particle excitation.
Now we turn our attention to Hab and compute it explicitly. Terms containing

only one particle operator bn or b†n corresponding to the single particle do not enter
the Hamiltonian, as we have seen in section 1.2. We also omitted the terms involving
three bn’s and one macroscopic wave function. They may be included in order to
study thermalization effects. This kind of terms appears as second order processes
and can be understood as collision terms. By retaining all the quadratic and quartic
terms in bn, we end up with the following Hamiltonian

Hab =
∑

n,m

(ǫnm − µ + CnmN0 + Dnm(a∗1a2 + a∗2a1)) b†nbm +

+
2∑

i=1

∑

n,m

(
Cnm

4
a∗i a

∗
i bnbm + h.c.

)
+
∑

n,m

(
Dnm

2
a∗1a

∗
2bnbm + h.c.

)
+

+
∑

n,m

∑

n′,m′

Bnmn′m′b
†
nb†mbn′bm′ , (4.1.5)

where

ǫnm =

∫
d3xϕn

(
− 1

2m
△+ Vext(x, t)

)
ϕm (4.1.6)

is the energy spectrum of the single particle excitations,

Cnm = 2g

∫
d3xϕnϕm|φi|2 for i = 1, 2 (4.1.7)

and

Dnm = 2g

∫
d3xϕnϕmφ1φ2 (4.1.8)

are overlap integrals, and

Bnmn′m′ = g

∫
d3xϕnϕmϕn′ϕm′ (4.1.9)

is the integral corresponding to the interactions of the particles outside of the con-
densate.

Now, in order to simplify our Hamiltonian, we perform some approximations:
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• As it was done in chapter 3, we take the nonlinear tunneling expressed by
the term proportional to (a∗1a2 +a∗2a1)

2 in the Hamiltonian Haa out of consid-
eration, since it displays the same physics as the linear tunneling and is less
probable,

• term proportional to T1(a
∗
1a1 + a∗2a2) is negligibly small with respect to the

values of the Josephson coupling J under consideration,

• T2 is negligibly small with respect to T0,

• we assume that the creation and the annihilation of two non-condensate par-
ticles described by terms like aiajb

†
nb
†
m and a∗i a

∗
jbnbm is less probable for two

particles coming from different levels of being created in different levels. In
other words, we can make the following replacements

ǫnm ≈ ǫnδnm, Cnm ≈ Cδnm and Dnm ≈ Dδnm, (4.1.10)

where ǫn, C and D are real numbers. This is a suitable approximation, since
{ϕ} is a set of orthonormal functions,

• at last, we treat the interaction term involving four bn’s in Hartree-Fock ap-
proximation, i.e.

∑

n,m

∑

n′,m′

Bnmn′m′b
†
nb†mbn′bm′ = B

∑

n,m

[
2〈b†nbn〉b†mbm +

1

2

(
〈b†nb†n〉bmbm + h.c

)]

(4.1.11)
where 〈b†nb†n〉 and 〈bnbn〉 are nonzero due to the finite value of the order pa-
rameter [20].

In the preceeding chapter we were able to perform a rotation, in order to get rid
off the term proportional to the square of the number of particles of both conden-
sates. In the ”semiclassical” approximation the condensate number of particles is
a conserved quantity. This is not the fact for the system under consideration. The
total number of particles of the system is given by

Ntot = a∗1(t)a1(t) + a∗2(t)a2(t) + 〈b†n(t+)bn(t)〉, (4.1.12)

where the notation t+ means that the time argument of b†n is infinitesimally larger
than the time argument of the other bn. Since N0 = N1 + N2 is not a conserved
quantity anymore, we have to keep the term proportional to N2

0 .
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Inserting all the simplifications listed above in the Hamiltonian (4.1.4) we obtain

H = −J

2
(a∗1a2 + a∗2a1) +

[
(E − µ)N0 +

T0

4
N2

0

]
+

T0

4
(a∗1a1 − a∗2a2)

2 +

+
∑

n

(ǫn − µ + CN0 + D(a∗1a2 + a∗2a1)) b†nbn +

+
C

4

2∑

i=1

∑

n

(a∗i a
∗
i bnbn + h.c.) +

D

2

∑

n

(a∗1a
∗
2bnbn + h.c.) +

+B
∑

n,m

[
2〈b†nbn〉b†mbm +

1

2

(
〈b†nb†n〉bmbm + h.c

)]
. (4.1.13)

The first line of the Hamiltonian displays the dynamics of both condensates. The
first term with the coupling J/2 describes the coherent particle tunneling between
the two condensates, the two terms involving four macroscopic wave functions be-
long to the interatomic interactions of the condensates, and EN0 is the kinetic
term. The other lines describe the behavior of the single particle excitations and
how they are coupled to the condensates. The terms proportional to D exhibit a
kind of ”auxiliary bypass” from one well to the other1 and the terms involving the
coupling C are responsible for the ”intrawell” coupling between the condensate and
the particles outside of the condensate. Some of these processes are illustrated in
Fig. (4.2).

J

D CC

coherent tunneling

condensate 2

excitations

condensate 1

auxiliary bypass

Figure 4.2: Here some of the processes displayed by the Hamiltonian (4.1.13).

In the rest of this chapter we will focus on this Hamiltonian and derive from
it a system of selfconsistent equations consisting of the kinetic equations for the

1In this thesis we call ”auxiliary bypass” to the bypass consisting of excitations, over which
particles maybe transfered from one well to the other
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particle outside of the condensate and associated equations for both macroscopic
wave functions. The tools used for the derivation were presented in Chapter 2.1
and 1.

4.2 Kinetic Equations

Above we presented the model we want to consider, and derived microscopically
the Hamiltonian that describes the situation. Further, in chapter 2 we present
the non-equilibrium extension for a system of bosons at zero temperature. In the
present section we want to make use of this formalism in order to derive the kinetic
equations for our model.

We now start computing the equations of motion for the field operators b†n and
bn corresponding to the creation and annihilation operator of the non-condensate
particles:

[
i
∂

∂t
− ǫn + µ−

(
CN0 + D(a∗1a2 + a∗2a1) + 2B

∑

m

〈
b†mbm

〉
)]

bn(t)

=

(
C

2

2∑

i=1

aiai + Da1a2 + B
∑

m

〈bmbm〉
)

b†n(t), (4.2.1)

[
−i

∂

∂t
− ǫn + µ−

(
CN0 + D(a∗1a2 + a∗2a1) + 2B

∑

m

〈
b†mbm

〉
)]

b†n(t)

=

(
C

2

2∑

i=1

a∗i a
∗
i + Da∗1a

∗
2 + B

∑

m

〈
b†mb†m

〉
)

bn(t). (4.2.2)

It is not a difficult task to compute from these equations the equations of motion
for the Green’s functions. The procedure may be found in the literature [34, 33, 18].
After some algebra we find for the matrix reprensentation of the non-condensate
particle Green’s function in Bogoliubov space in real time

∑

m

∫
dt
[
(G0)

−1
nm(t, t)−ΣHF

nm (t, t)
]
G
′≷
ml(t, t

′)

=
∑

m

t∫

−∞

dtΓnm(t, t)G′≷ml(t, t
′)−

∑

m

t′∫

−∞

dt (Σc)
≷
nm(t, t)Aml(t, t

′). (4.2.3)

Here we introduced the inverse of the non-interacting 2× 2 matrix Bose gas prop-
agator

(G0)
−1
nm(t, t′) =

[
iτ3

∂

∂t
− ǫn + µ

]
1δnmδ(t− t′) ≡ (G0)

−1(t; n) · δnmδ(t− t′), (4.2.4)
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where

τ3 =

(
1 0
0 −1

)
(4.2.5)

and 1 is the 2 × 2 identity matrix. Further the non-condensate particle is defined
as follows

G′ml(t, t
′) = −i

(〈
Tcbn(t)b†m(t′)

〉
〈Tcbn(t)bm(t′)〉〈

Tcb
†
n(t)b†m(t′)

〉 〈
Tcb
†
n(t)bm(t′)

〉
)

, (4.2.6)

with Tc now as the ordering along the Keldysh contour. The Hartree-Fock selfen-
ergy ΣHF

nm can be written down according to the Feynman rules extracted from the
Hamiltonian (4.1.13). Its components are

ΣHF
11 (t) = CN0(t) + D(a∗1(t)a2(t) + a∗2(t)a1(t)) + 2B

∑

m

〈
b†m(t+)bm(t)

〉

ΣHF
12 (t) =

C

2

2∑

i=1

ai(t)ai(t) + Da1(t)a2(t) + B
∑

m

〈bm(t+)bm(t)〉

ΣHF
21 (t) =

C

2

2∑

i=1

a∗i (t)a
∗
i (t) + Da∗1(t)a

∗
2(t) + B

∑

m

〈
b†m(t+)b†m(t)

〉

ΣHF
22 (t) = CN0(t) + D(a∗1(t)a2(t) + a∗2(t)a1(t)) + 2B

∑

m

〈
b†m(t+)bm(t)

〉

(4.2.7)

where
ΣHF

nm (t, t′) = ΣHF (1) · δnmδ(t− t′). (4.2.8)

The two terms containing convolutions of the selfenergies (of higher order processes)
with the non-condensate particle Green’s function on the right hand side of Eq.
(4.2.3) were included phenomenologically in order to be able to study thermalization
effects due to collisions (in future works).

Now, following a similar analysis like in Chapter 2. We start by writing down
the 11 and 12 components of Eq. (4.2.3) and from its hermitian conjugate

[
i
∂

∂t
− ǫn + µ

]
G<

nm(t, t′) = ΣHF
11 (t)G<

nm(t, t′) + ΣHF
12 (t)F †<nm(t, t′)+

+
∑

l

t∫

−∞

dt
[
(Γnl)11(t, t)G

<
lm(t, t′) + (Γnl)12(t, t)F

†<
lm (t, t′)

]

−
∑

l

t′∫

−∞

dt
[
(Σc<

nl )11(t, t)(Alm)11(t, t
′) + (Σc<

nl )12(t, t)(Alm)21(t, t
′)
]
, (4.2.9)
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[
i
∂

∂t
− ǫn + µ

]
F<

nm(t, t′) = ΣHF
11 (t)F<

nm(t, t′) + ΣHF
12 (t)G

<

nm(t, t′)

+
∑

l

t∫

−∞

dt
[
(Γnl)11(t, t)F

<
lm(t, t′) + (Γnl)12(t, t)G

<

nm(t, t′)
]

−
∑

l

t′∫

−∞

dt
[
(Σc<

nl )11(t, t)(Alm)12(t, t
′) + (Σc<

nl )12(t, t)(Alm)22(t, t
′)
]

(4.2.10)

and
[
−i

∂

∂t′
− ǫm + µ

]
G<

nm(t, t′) = ΣHF
11 (t′)G<

nm(t, t′) + ΣHF
21 (t′)F<

nm(t, t′)+

−
∑

l

t′∫

−∞

dt
[
G<

nl(t, t)(Γlm)11(t, t
′) + F<

nl(t, t)(Γlm)21(t, t
′)
]

+
∑

l

t∫

−∞

dt
[
(Alm)11(t, t)(Σ

c<
nl )11(t, t

′) + (Alm)12(t, t)(Σ
c<
nl )21(t, t

′)
]
, (4.2.11)

[
i

∂

∂t′
− ǫm + µ

]
F<

nm(t, t′) = ΣHF
22 (t′)F<

nm(t, t′) + ΣHF
12 (t′)G<

nm(t, t′)

−
∑

l

t′∫

−∞

dt
[
F<

nl(t, t)(Γlm)22(t, t
′) + G<

nl(t, t)(Γlm)12(t, t
′)
]

+
∑

l

t∫

−∞

dt
[
(Anl)11(t, t)(Σ

c<
lm)12(t, t

′) + (Anl)12(t, t)(Σ
c<
lm)22(t, t

′)
]

(4.2.12)

where we introduced the components of the non-condensate particle Green’s func-
tion as follows

G′ml(t, t
′) =

(
Gnm(t, t′) Fnm(t, t′)
F †nm(t, t′) Gnm(t, t′)

)
. (4.2.13)

The equations for the greater component look the same, except that > appears
instead of < as superscript.

In the same way, as it was done in Chapter 2, we take the difference of Eq.
(4.2.9) and Eq. (4.2.11)

[
i

(
∂

∂t
+

∂

∂t′

)
− (ǫn − ǫm)−

(
ΣHF

11 (t)− ΣHF
11 (t′)

)]
G<

nm(t, t′)

= ΣHF
12 (t)F †<nm(t, t′)− ΣHF

21 (t′)F<
nm(t, t′) + (I<

nm)11(t, t
′) (4.2.14)
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and then the sum of Eq. (4.2.10) and Eq. (4.2.12)

[
i

(
∂

∂t
+

∂

∂t′

)
− (ǫn + ǫm) + 2µ−

(
ΣHF

11 (t) + ΣHF
22 (t′)

)]
F<

nm(t, t′)

= ΣHF
12 (t)G

<

nm(t, t′) + ΣHF
12 (t′)G<

nm(t, t′) + (I<
nm)12(t, t

′), (4.2.15)

where we introduced (I<
nm)11 and (I<

nm)12 like in Chapter 2.2

Now we express the last two equations for the components of the non-condensate
particle Green’s function in terms of the center of mass time variable

T =
t + t′

2
, (4.2.16)

and the relative time coordinate

τ = t− t′. (4.2.17)

Further we assume, that the Hartree-Fock self-energies depend only on small values
of τ and therefore we can expand them in powers of τ , keeping only the linear terms.
Thus we obtain

[
i

∂

∂T
− (ǫn − ǫm)− τ

∂

∂T
ΣHF

11 (T )

]
G<

nm(τ, T )

= ΣHF
12 (T )F †<nm(τ, T )− ΣHF

21 (T )F<
nm(τ, T )

+
1

2

[
F †<nm(τ, T )τ

∂

∂T
ΣHF

12 (T ) + F<
nm(τ, T )τ

∂

∂T
ΣHF

21 (T )

]

+ (I<
nm)11(τ, T ) (4.2.18)

and
[
i

∂

∂T
− (ǫn + ǫm) + 2µ− 2ΣHF

11 (T )

]
F<

nm(τ, T )

= ΣHF
12 (T )G

<

nm(τ, T ) + ΣHF
12 (T )G<

nm(τ, T )

+
1

2

[
G

<

nm(τ, T )τ
∂

∂T
ΣHF

12 (T )−G<
nm(τ, T )τ

∂

∂T
ΣHF

12 (T )

]

+ (I<
nm)12(τ, T ). (4.2.19)

The last step in the derivation of the kinetic equations for the non-condensate
particle Green’s function is to do the Fourier transform with respect to τ of Eq.

2A more detailed discussion can be found in Appendix B.
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(4.2.18) and Eq. (4.2.19). We get now

[
∂

∂T
+ i(ǫn − ǫm) +

∂

∂T
ΣHF

11 (T )
∂

∂ω

]
G<

nm(ω, T )

= −i
[
ΣHF

12 (T )F †<nm(ω, T )− ΣHF
21 (T )F<

nm(ω, T )
]

− 1

2

[
∂ΣHF

12 (T )

∂T

∂

∂ω
F †<nm(ω, T ) +

∂ΣHF
21 (T )

∂T

∂

∂ω
F<

nm(ω, T )

]

− i(I<
nm)11(ω, T ), (4.2.20)

[
∂

∂T
+ i(ǫn + ǫm)− i2µ + i2ΣHF

11 (T )

]
F<

nm(ω, T )

= −iΣHF
12 (T )

[
G

<

nm(ω, T ) + G<
nm(ω, T )

]

− 1

2

∂ΣHF
12 (T )

∂T

∂

∂ω

[
G

<

nm(ω, T )−G<
nm(ω, T )

]

− i(I<
nm)12(ω, T ). (4.2.21)

The Fourier components of the lesser Green’s function appearing in the equations
above are given by

B<
nm(τ, T ) =

∞∫

−∞

dω

2π
e−iωtB<

nm(ω, T ), for B ∈ {G,F, F †, G}. (4.2.22)

Eq. (4.2.20) and Eq. (4.2.21) are the kinetic equations for the non-condensate
Green’s function and anomalous Green’s function. Now in order to have a system
of self-consist coupled equations, we have to derive the equations of motion for the
two macroscopic wave functions. For this we make use of the generalized Gross-
Pitaevskii equation (2.2.42). We then decompose the order parameter in two modes

Ψ0(~x, T ) = φ1(~R)a1(T ) + φ2(~R)a2(t) (4.2.23)

and replace the operators Ψ′ and Ψ′† appearing in the non-condensate particle
density and anomalous density by the mode expansion displayed in Eq. (4.1.2), i.e.

Ψ′(~R, T ) =
∑

n

ϕn(~R)bn(T ). (4.2.24)

Notice, that the arguments appearing in the field operator are the macroscopic
coordinates. This is valid, since the dependences in the the field operators appearing
in the average, that corresponds to the density of the non-condensate particles, are
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the same. Making the replacements (4.2.23) and (4.2.24) in Eq. (2.2.42), then

multiplying by φ1(~R) and integrating over ~R, we obtain

i
∂

∂T
a1(T ) =

(
E − µ + T0N1(T ) + iC

∑

n

iG<
nn(τ = 0, T )

)
a1(T )

−
(

J

2
−D

∑

n

iG<
nn(τ = 0, T )

)
a2(T ) +

(
C

2
a∗1(T ) +

D

2
a∗2

)∑

n

iF<
nn(τ = 0, T )

+




∫

d3R (φ1(~R))2

T∫

−∞

d2 [S>
11 − S<

11] (~R− ~r2, T − t2)



 a1(T )+

+




∫

d3R φ1(~R)φ2(~R)

T∫

−∞

d2 [S>
11 − S<

11] (
~R− ~r2, T − t2)



 a2(T )+

+




∫

d3R (φ1(~R))2

T∫

−∞

d2 [S>
12 − S<

12] (~R− ~r2, T − t2)



 a∗1(T )+

+




∫

d3R φ1(~R)φ2(~R)

T∫

−∞

d2 [S>
12 − S<

12] (~R− ~r2, T − t2)



 a∗2(T ). (4.2.25)

Similarly, after multiplying by φ2(~R) and integrating over ~R, we obtain

i
∂

∂T
a2(T ) =

(
E − µ + T0N2(T ) + iC

∑

n

iG<
nn(τ = 0, T )

)
a2(T )

−
(

J

2
−D

∑

n

iG<
nn(τ = 0, T )

)
a1(T ) +

(
C

2
a∗2(T ) +

D

2
a∗1

)∑

n

iF<
nn(τ = 0, T )

+




∫

d3R φ2(~R)

T∫

−∞

d2 [S>
11 − S<

11] (~R− ~r2, T − t2)



 a2(T )+

+




∫

d3R φ1(~R)φ2(~R)

T∫

−∞

d2 [S>
11 − S<

11] (~R− ~r2, T − t2)



 a1(T )+

+




∫

d3R φ2(~R)

T∫

−∞

d2 [S>
12 − S<

12] (~R− ~r2, T − t2)



 a∗2(T )+

+




∫

d3R φ1(~R)φ2(~R)

T∫

−∞

d2 [S>
12 − S<

12] (~R− ~r2, T − t2)



 a∗1(T ). (4.2.26)
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where we used the approximations explained above.
The Eqs. (4.2.20) and (4.2.21) for the Green’s function of the non-condensate

particles and the Eqs. (4.2.25) and Eq. (4.2.26) for the two macroscopic wave
functions form a system of coupled integro-differential equation, that describe the
non-equilibrium features of two dilute Bose gas confined in a double well trap. The
integrals on the right hand side of all these equations suggest thermalization of the
excited particles due to collisions and the Hartree-Fock self-nergies display density
fluctuations.

4.2.1 The Collisionless Regime

Above we presented the model we want to consider. We used a combination of
Keldysh technique for systems out of equilibrium and field theoretical methods for
bosons at zero temperature for the derivation of the system of coupled differential
equations describing the model under consideration. This system of equations con-
sists of the kinetic equations for the Green’s function and the anomalous Green’s
function of the non-condensate particles, and the generalized Gross-Pitaevskii equa-
tions for the two condensate modes.

Now we are going to compute the equations for the collisionless regime. And for
this we follow the analysis done in section 2.2.1. We start by neglecting the collision
term and by putting the relative time coordinate τ in Eq. (4.2.18) and Eq. (4.2.21)
equal to zero. Thus we obtain
[
i

∂

∂T
− (ǫn − ǫm)

]
G<

nm(τ = 0, T ) = ΣHF
12 (T )F †<nm(τ = 0, T )−ΣHF

21 (T )F<
nm(τ = 0, T )

and
[
i

∂

∂T
− (ǫn + ǫm) + 2µ− 2ΣHF

11 (T )

]
F<

nm(τ = 0, T )

= ΣHF
12 (T )G

<

nm(τ = 0, T ) + ΣHF
12 (T )G<

nm(τ = 0, T ). (4.2.27)

Now we put n = m and define the distribution functions

f1(T, n) = iG<
nn(τ = 0, T ) (4.2.28)

f2(T, n) = iF<
nn(τ = 0, T ), (4.2.29)

and rewrite the kinetic equations:

∂

∂T
f1(T, n) = −i

[
ΣHF

12 (T )f ∗2 (T, n)− ΣHF
21 (T )f2(T, n)

]

and
[

∂

∂T
+ i2

(
ǫn − µ + ΣHF

11 (T )
)]

f2(T, n) = −iΣHF
12 (T ) (1 + 2f1(T, n)) , (4.2.30)
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which are now coupled to

i
∂

∂T
a1(T ) =

(
E − µ + T0N1(T ) + C

∑

n

f1(T, n)

)
a1(T )

−
(

J

2
−D

∑

n

f1(T, n)

)
a2(T ) +

(
C

2
a∗1(T ) +

D

2
a∗2

)∑

n

f2(T, n) (4.2.31)

and

i
∂

∂T
a2(T ) =

(
E − µ + T0N2(T ) + C

∑

n

f1(T, n)

)
a2(T )

−
(

J

2
−D

∑

n

f1(T, n)

)
a1(T ) +

(
C

2
a∗2(T ) +

D

2
a∗1

)∑

n

f2(T, n). (4.2.32)

In the next chapter we will present the numerical solutions of this system of equa-
tions.
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Chapter 5

Results

In the preceeding chapter we performed the microscopic derivation of the Hamilto-
nian describing two Bose gases confined in a double well trap at zero temperature.
We also derived the corresponding kinetic equations for the non-condensate parti-
cles and its associated equations for the two macroscopic condensate wave functions.
At the end of the chapter, in section 4.2.1 we considered the collisionless regime,
which is described within the Hartree-Fock approximation. In this chapter we want
to present the numerical results of these equations and discuss them.

5.1 The Boundary conditions

We consider first a system consisting of two independent Bose gases confined in a
double well potential at zero temperature. The system is assumed to be in equili-
brium, so that all particles of both gases are occupying the lowest state of energy.
Due to interactions, each of the gases can present particles occupying higher states
of energy. The analysis presentend in [44] showed that at zero temperature this
quantum depletion can be . 0.5%. This depletion can appear for each condensate
amplitude in our model, and is displayed by a non-zero intrawell coupling C be-
tween the condensate particles and the non-condensate particles. At a time t = t0
we suddenly change the shape of the trapping potential, lowering the barrier sep-
arating the two condensates. The experimental realization of such a set up is not
difficult [15, 13]. We have explained before, that one of the possible realizations of
a double well trapping potential is the overlap of a three dimensional harmonic con-
finement, generated by the magneto-optical trap, and a periodic one-dimensional
optical lattice with large lattice spacing. In order to change the height and/or width
of the barrier one has to modulate the amplitude and/or the lattice spacing of the
optical lattice. This would change the value of the Josephson coupling J , which
is related to the probability of tunneling from one well to the other one for one
particle. Moreover, upon suddenly lowering the barrier between the condensates,
these start mixing, and Bogoliubov quasiparticles above the condensates are cre-
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ated, absorbing part of the system’s entropy.1 In the case, that the barrier was not
lowered sufficiently, so that the particle tunneling through the barrier can set in,
we will see that the mixing of the gases is possible for a large coupling D describing
an auxiliary bypass over the single-particle excitations.

Before we start the discussion of our results, we have to point out that we express
all the energies in terms of the Josephson coupling J . Therefore we can write for
the Bogoliubov-Hartree-Fock coupled equations (4.2.30) - (4.2.32)

∂

∂T
f1(T, n) = −i

[
ΣHF

12 (T )f ∗2 (T, n)− ΣHF
21 (T )f2(T, n)

]
(5.1.1)

and
[

∂

∂T
+ i2

(
ǫ̃n − µ̃ + ΣHF

11 (T )
)]

f2(T, n) = −iΣHF
12 (T ) (1 + 2f1(T, n)) , (5.1.2)

with

ΣHF
11 (T ) = C̃N0(T ) + D̃(a∗1(T )a2(T ) + a∗2(T )a1(T )) + 2B̃

∑

m

f1(T,m)

ΣHF
12 (T ) =

C̃

2

2∑

i=1

ai(T )ai(T ) + D̃a1(T )a2(T ) + B̃
∑

m

f2(T,m)

ΣHF
21 (T ) =

C̃

2

2∑

i=1

a∗i (T )a∗i (T ) + D̃a∗1(T )a∗2(T ) + B̃
∑

m

f ∗2 (T,m)

ΣHF
22 (T ) = ΣHF

11 (T ), (5.1.3)

and for the associated equations for the macroscopic wave functions

i
∂

∂T
a1(T ) =

(
Ẽ − µ̃ + T̃0N1(T ) + C̃

∑

n

f1(T, n)

)
a1(T )

−
(

1− D̃
∑

n

f1(T, n)

)
a2(T ) +

(
C̃

2
a∗1(T ) +

D̃

2
a∗2

)
∑

n

f2(T, n) (5.1.4)

and

i
∂

∂T
a2(T ) =

(
Ẽ − µ̃ + T̃0N2(T ) + C̃

∑

n

f1(T, n)

)
a2(T )

−
(

1− D̃
∑

n

f1(T, n)

)
a1(T ) +

(
C̃

2
a∗2(T ) +

D̃

2
a∗1

)
∑

n

f2(T, n), (5.1.5)

1Experimentally two independently prepared Bose gases (J = 0) have a definite particle number
and are therefore described by a coherent superposition of all possible phases between 0 and 2π.
If one permits at some certain point t = t0 the exchange of particles between the condensates,
decoherence sets in and the relative phase difference between both condensates takes random
values.
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where

Ã =
A

J/2
for A ∈ {ǫn, µ, E, T0, C,D,B}, (5.1.6)

and the time was rescaled as follows

J

2
T 7−→ T. (5.1.7)

For the discussion we now introduce the particle imbalance between the two
condensates normalized to the total particle number

z =
N1 −N2

N1 + N2 +
∑

n f1(T, n)
=

N1 −N2

N
. (5.1.8)

We keep the definition given in chapter 3 for the relative phase difference. Further,
without lost of generality, we can choose the energy Ẽ corresponding to the lowest
states to be equal to the chemical potential µ̃. In the following we will introduce
the difference

ω̃n = ǫ̃n − µ̃ (5.1.9)

as a new parameter. In order to make some estimations for ω̃n we recall that in
Section 4.1 it was assumed for the derivation of the model, that the spectrum of the
non-condensate particles coincides with the spectrum of the harmonic component
of the trapping potential2. We can therefore write

ω̃n =
ωho

J/2
n, (5.1.10)

where ωho is the oscillator frequency, and experimentally ωho ∼ 100 Hz [10]. The
experimental value for J ∼ 10 Hz [27]. With these two values we can make the next
estimation:

ωho

J/2
∼ 10. (5.1.11)

In the following we want to discuss the results for initial non-condensate particle
number equal to zero and to a finite number, separately. For both cases we present
results for large and small interatomic interactions between the condensate particles.
We will see, that for small coupling C and D with the non-condensate particles, the
dynamics of the system approaches the mean field regime presented in chapter 3.
For simplicity, an initial macroscopic phase difference is chosen to be equal to zero.

2Surely, there are intrawell excited levels corresponding to the condensate amplitude oscillations
lying lower than the barrier separating the condensates, but we expect that the dynamics of mixing
are mainly displayed by the levels above the barrier separating the gases.
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5.1.1 Quantum Depletions in the Initial Equilibrium State

We consider two Bose gases at zero temperature with a very large number of parti-
cles. Due to the intrawell interaction we observe quantum depletions of condensate
amplitudes, which manifest themselves as a finite number of non-condensate parti-
cles (N1 = 1 · 105, N2 = 4 · 105 and

∑
n f1(T = 0, n) = 2500,

∑
n f2(T = 0, n) =

2500.5)3. At time t = t0 we lower the barrier and the intrawell non-condensate
particles coupling C increases. The auxiliary bypass D and the Hartree-Fock cou-
pling B become finite, where B is many orders of magnitude smaller than the other
parameters and the dynamics of the system do not strongly depend on it. Hence
we fix the value of B = 1 · 10−7.

In the mean field approximation the dynamics of the coherent particle tunneling
between two condensates is described in terms of the interwell population imbalance
and the relative phase difference. In order to be able to compare our results with
the results obtained in different studies done in the past [27, 31, 30], we also show
the dynamics of the system in terms of the population imbalance and relative phase
difference introduced in Eq. (5.1.8) and (3.1.13), respectively.

Now we will consider the dynamics of the system for T0 = 5·10−5 and T0 = 1·10−5

separately:

• First we consider the dynamics of a system with large interatomic interactions
between the condensate particles T0 = 5 ·10−5 for different coupling with non-
condensate particles C and D. Setting the auxiliary bypass and the intrawell
coupling to the noncondensate particles C = D = 10−5 to same order of
magnitude as T0, we observe weak deviations from the mean field regime
(Page 66). The particle imbalance as function of the rescaled time presents
beats caused by the amplitude oscillations of both condensates. Although
the system for this parameter combination is selftrapped, because the particle
imbalance is oscillation around a non-zero value.

Keeping the values for T0 = 5 · 10−5 and C = 10−5 we increase the auxiliary
bypass D = 1.5 · 10−5 (Page 67). We observe that the system presents very
strong deviations from the mean field studies. The amplitude oscillations of
both condensates are at the begin larger than for the combination of param-
eters considered before, but even though relatively small. At some time the

3Using the ”quasiparticle approximation” for the initial equilibrium state, we find that

f1(T, n) = −iv2

n
and f2(T, n) = −ivnun,

where un and vn are the solutions of the Bogoliubov de Gennes equation (1.3.4) and satisfy

u2

n
− v2

n
= 1.

In our analysis we imply that the equilibrium problem has already been solved and assume a
number of non-condensate particles . 0.5% of the total particle number. Having f1 the estimation
of f2 is straightforward.
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number of particles occupying the higher states of energy increases abruptly.
This causes a stronger deviation from the mean field results, where the sys-
tem undergoes a transition from a selftrapped to a non-selftrapped system,
making the mixing of condensates possible. For an even stronger auxiliary
bypass D = 1 · 10−4 the system undergoes the transition earlier (Page 68).

• In the same way we consider a system with a small intrawell interatomic inter-
actions between the condensate particles T0 = 1·10−5, and we set the couplings
C = 1 · 10−5 and D = 5 · 10−5. In this case the system behaves as in the mean
field regime (Page 69). We observe coherent particle tunneling through the
barrier. The amplitude oscillations causes small deviations from the mean
field behavior, that are not visible at the length scale in consideration.

Increasing the value for the auxiliary bypass D = 7 ·10−5 we find that number
of non-condensate particles grows abruptly at some certian time. This causes
that relative phase stops oscillating around 0 and starts oscillating around
π, with a varying amplitude and a new frequency (Page 70). Making the
auxiliary bypass even stronger D = 1 · 10−4, the increment in the number of
non-condensate particles happens earlier and the system does not display the
glasses-like phase space portrait anymore (Page 71).

5.1.2 Initial Equilibrium State without Quantum Deple-

tions

We mention before that at zero temperature the quantum depletion is about 0.5%
(see [44]). This is a negligibly small number. We can therefore assume that at zero
temperature all particles are occupying the lowest state of energy (in our system, the
two condensates). Studying the system without initial non-condensate particles we
find the same behavior for the different parameter sets, such as the one presented by
the system with initial amplitude oscillations. Hence, we only display two different
parameter combinations in order to show the system is undergoing the transition
from the mean field regime to the regime where it is dominated by the amplitude
oscillations (Pages 72 and 73).
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Parameters:
∑

n f1(T = 0, n) = 2500, T0 = 5 · 10−5,
C = 1 · 10−5, D = 1 · 10−5, B = 1 · 10−7

0 1 2 3 4 5
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-0.5

-0.4
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-0.2
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0 1 2 3

 J·T/2
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-0.3

-0.2

 z
(T

)

0 1 2 3
0

0.1

 f 1(T
,1

)/
N

0 1 2 3
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1.5×10
-3

 f 1(T
,3

)/
N

0 1 2 3

 J·T/2

3.6×10
-4

4.0×10
-4

4.4×10
-4

 f 1(T
,5

)/
N

0 1 2 3

 J·T/2
0

0.1

 Σ
n

 f 1(T
,n

)/
N
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Parameters:
∑

n f1(T = 0, n) = 2500, T0 = 5 · 10−5,
C = 1 · 10−5, D = 1.5 · 10−5, B = 1 · 10−7

0 1 2 3 4 5
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-0.4
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0.6
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n

 f 1(T
,n

)/
N
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Parameters:
∑

n f1(T = 0, n) = 2500, T0 = 5 · 10−5,
C = 1 · 10−5, D = 1 · 10−4, B = 1 · 10−7

0 0.2 0.4 0.6 0.8
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,n

)/
N
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Parameters:
∑

n f1(T = 0, n) = 2500, T0 = 1 · 10−5,
C = 1 · 10−5, D = 5 · 10−5, B = 1 · 10−7

0 1 2 3 4 5 6
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N
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Parameters:
∑

n f1(T = 0, n) = 2500, T0 = 1 · 10−5,
C = 1 · 10−5, D = 7 · 10−5, B = 1 · 10−7
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N
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Parameters:
∑

n f1(T = 0, n) = 2500, T0 = 1 · 10−5,
C = 1 · 10−5, D = 1 · 10−4, B = 1 · 10−7
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N
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Parameters:
∑

n f1(T = 0, n) = 0, T0 = 5 · 10−5,
C = 1 · 10−5, D = 1 · 10−4, B = 1 · 10−6
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Parameters:
∑

n f1(T = 0, n) = 0, T0 = 1 · 10−5,
C = 1 · 10−5, D = 1 · 10−3, B = 1 · 10−6

0 0.2 0.4 0.6 0.8

 θ/π

-0.5

0

0.5

 z
(T

)

0 0.5 1 1.5

 J·T/2

-0.5

0

0.5
 z

(T
)

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

 f 1(T
,1

)/
N

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

 f 1(T
,3

)/
N

0 0.5 1 1.5

 J·T/2
0

0.05

0.1

0.15

0.2

0.25

 f 1(T
,5

)/
N

0 0.5 1 1.5

 J·T/2
0

0.1

0.2

0.3

0.4

 Σ
n

 f 1(T
,n

)/
N

73



Conclusions

In this work we have presented a microscopic theory for the dynamics of a trapped
Bose gas in the presence of a condensate fraction (see Chapters 1 and 2). Starting
from the mean field approximation we derived the Gross-Pitaevskii equation. After
including the quantum fluctuations we were able to present the generalized Gross-
Pitaevskii equation of motion for the macroscopic condensate wave function, which
is coupled to the kinetic equations for the Green’s and anomalous Green’s functions.
The resulting equations can be applied to study a huge spectrum of problems as-
sociated with the non-equilibrium dynamics in a trapped Bose gas, such as in the
present work.

We have considered a system consisting of two independently prepaired trapped
Bose gases at zero temperature. At time t = t0 we lowered abruptly the barrier
between the condensates. In this way we permitted the mixing of the condensates,
and simultaneously, the appearence of single-particle excitations, which absorb part
of the system’s entropy. We have made use of the techniques presented in Chapter
2 for the derivation of the kinetic equations and the associated generalized Gross-
Pitaevskii equation to study the problem. In Chapter 4 we derived the Hamiltonian
governing of the dynamics of a system, which is an extension of the Hamiltonian
derived in the mean field approximation in Chapter 3. We showed that within the
mean field approximation the interwell particle imbalance and the relative phase
difference between the condensates are suitable choice of variables to describe the
coherent particle tunneling between the condensates. Based on this fact and, in
order to be able to compare our results with the results obtained in this approxima-
tion, we introduced the intrawell particle imbalance normalized to the total particle
number and kept the definition of the relative phase difference given in the mean
field regime.

We presented at the end of chapter 2 the collisionless regime for a system of
bosons confined in a trap in the presence of a condensate fraction regime, which is
described within the Bogoliubov-Hartree-Fock approximation. This approximation
only displays the density fluctuations. Similarly, we showed in Section 4.2.1 the
Bogoliubov-Hartree-Fock equation and their associated equations of motion for both
condensates modes, which we analized numerically in Chapter 5.

The numerical results in Chapter 5 display a transition from the dynamics gov-
erned by the mean field approximation and the dynamics dominated by the am-
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plitude oscillations of the condensates. This transition appears to be very strong
correlated with the strength of the auxiliary bypass, as seen from the displacement
of particles from one condensate to the other over the excitated states.

Thermalization effects are not included in the collisionless regime (within the
Hartree-Fock approximation). Future work demands the inclusion of the second
and higher order terms in order to visualize thermalization. Part of this analytical
work is presented in Appendix A. Extra effort is still needed to simplify the collision
terms appearing on the right-hand side of the kinetic equations.
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Appendix A

Analytical Continuation

Procedure

We have seen in chapter 2.1 that the convolution of the selfenergy and the full
propagator appears on the right hand side of the equation of motion for the Green’s
function, where the time integration is along the closed time path, depicted in Fig.
(2.2), and the integration of the space is the usual one.1 We are therefore now
interested in how to formulate such quantities in real time.

We consider, for instance,

C(τ1, τ1′) =

∫

c

dτ A(τ1, τ)B(τ, τ1′), (A.0.1)

where A and B are functions of the contour variable, and the involved contour is
the closed time path depicted in Fig. 2.1.

Now we demonstrate the analytical continuation procedure for the case of C<.
The lesser quantity means, that the contour time τ1 appears earlier than the contour
time τ1′ . Now making use of analyticity we deform the contour c in two the contour
c1 + c1′ , shown in Fig. A.1. The expression in Eq. (A.0.1), for the chosen contour
ordering, therefore becomes

C<(τ1, τ1′) =

∫

c1

dτ A(τ1, τ)B(τ, τ1′) +

∫

c1′

dτ A(τ1, τ)B(τ, τ1′)

=

∫

c1

dτ A(τ1, τ)B<(τ, τ1′) +

∫

c1′

dτ A>(τ1, τ)B(τ, τ1′), (A.0.2)

where we use in the last equality, that on the contour c1, τ1′ appears after τ ∈ c1

and on the contour c1′ , τ1 appears before τ ∈ c1′ .

1For the finite temperature case, we got additional to the countor shown in Fig. (2.1), an
appendix contour in the imaginary direction from t0 to t0 − iβ, where β is the Boltzmann factor
proportional to the inverse of the temperature. If we are not interested in the initial correlations
we can let t0 → −∞ and obtain the Keldysh contour, shown in Fig. (2.2)
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c1′

c1

t0 τ1 τ1′

Figure A.1: Deforming the contour c into the contour built by the contours c1 and
c1′ .

Splitting in forward and backward contour parts we have

C<(τ1, τ1′) =

∫

−→c1

dτ A>(τ1, τ)B<(τ, τ1′)
−→c1 : τ <c τ1

=

∫

←−c1

dτ A<(τ1, τ)B<(τ, τ1′)
←−c1 : τ >c τ1

=

∫

−→c1

dτ A<(τ1, τ)B<(τ, τ1′)
−→c1 : τ <c τ1′

=

∫

←−c1

dτ A<(τ1, τ)B>(τ, τ1′)
←−c1 : τ >c τ1′ . (A.0.3)

Parameterizing the forward and backward contours according to

τ(t) = t t ∈ {t0, t1(′)}, (A.0.4)

we get

C<(τ1, τ1′) =

t1∫

−∞

dτ [A>(τ1, τ)− A<(τ1, τ)] B<(τ, τ1′)

−
t1′∫

−∞

dτ A<(τ1, τ) [B>(τ1, τ)−B<(τ1, τ)] (A.0.5)

for t0 −→ −∞. Now introducing the retarded function

Aret(τ1, τ1′) = θ(τ1 − τ1′) [A>(τ1, τ)− A<(τ1, τ)] (A.0.6)

and the advanced function

Aadv(τ1, τ1′) = −θ(τ1′ − τ1) [A>(τ1, τ)− A<(τ1, τ)] (A.0.7)

we have the real time rule

C<(τ1, τ1′) =

∞∫

−∞

dτ
(
Aret(τ1, τ)B<(τ, τ1′) + A>(τ1, τ)Aadv(τ, τ1′)

)
. (A.0.8)
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Analogously one can show

C>(τ1, τ1′) =

t1∫

−∞

dτ [A>(τ1, τ)− A<(τ1, τ)] B>(τ, τ1′)

−
t1′∫

−∞

dτ A>(τ1, τ) [B>(τ1, τ)−B<(τ1, τ)] (A.0.9)

and

C>(τ1, τ1′) =

∞∫

−∞

dτ
(
Aret(τ1, τ)B>(τ, τ1′) + A<(τ1, τ)Aadv(τ, τ1′)

)
. (A.0.10)
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Appendix B

Inclusion of Collisions

In chapter 2 we presented the non-equilibrium extension of the field theory for a
system of bosons in the presence of a condensate. Within this frame we derived
the quantum Boltzmann equation for the particle outside of the condensate and
the associated equation of motion for the condensate wave function. The right
hand side of the equations display collision integrals containing processes of second
and higher order that are responsible for thermalization effects. In chapter 4 we
presented the model in consideration and derived in section 4.2 its corresponding
Boltzmann equations for the distribution functions and its associated equations for
the two condensate wave functions. These Boltzmann equations also presented the
second and higher order processes in collisions integrals on the right hand side of
the equations. Now we want to analyze these integrals under the assumption, that
the selfenergies and the Green’s functions are slowly varying functions for the center
of mass time T , i.e. that they are sharply peaked around τ = 0.

We consider

t∫

−∞

dtΓnl(t, t)G
′<
lm(t, t′)

=

T+τ/2∫

−∞

dtΓnl

(
t + T + τ/2

2
, T + τ/2− t

)
G′<lm

(
t + T − τ/2

2
, t− T + τ/2

)

=

τ∫

−∞

dtΓnl

(
T + t/2, τ − t

)
G′<lm

(
T + t/2− τ/2, t

)
, (B.0.1)

where Γnl is the ”spectral weight” of the selfenergy matrix containing second and
higher order processes and G′ is the non-condensate matrix Green’s function intro-
duced in Eq. (4.2.3). Because the selfenergies involved in Γnl, the Green’s function
are to be sharply peaked about τ = 0, we can neglect the necessarily small quantities
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added to T in Eq. (B.0.1). Then we get in first order

t∫

−∞

dtΓnl(t, t)G
′<
lm(t, t′) ≈

τ∫

−∞

dtΓnl

(
T, τ − t

)
G′<lm

(
T, t
)

≈ 1

2

∞∫

−∞

dtΓnl

(
T, τ − t

)
G′<lm

(
T, t
)
. (B.0.2)

The other term on the right hand side of Eq. (4.2.3) contains the integral

t′∫

−∞

dt (Σc)
<
nl(t, t)Alm(t, t′)

=

T−τ/2∫

−∞

dt (Σc)
<
nl

(
t + T + τ/2

2
, T + τ/2− t

)
Alm

(
t + T − τ/2

2
, t− T + τ/2

)

=

∞∫

τ

dt (Σc)
<
nl

(
T − t/2 + τ/2, t

)
Alm

(
T − t/2, τ − t

)
, (B.0.3)

involving the collision selfenergy (Σc)
<
nl and the spectral weight function A corre-

sponding to the non-condensate particle Green’s function. We again make use of
the fact that only small values of τ and t are important. Thus we get

t′∫

−∞

dt (Σc)
<
nl(t, t)Alm(t, t′) ≈

∞∫

τ

dt (Σc)
<
nl

(
T, t
)
Alm

(
T, τ − t

)

≈ 1

2

∞∫

−∞

dt (Σc)
<
nl

(
T, t
)
Alm

(
T, τ − t

)
. (B.0.4)

Now inserting Eq. (B.0.2) and Eq. (B.0.2) in the real time Dyson-Belayev equation
(4.2.3) we obtain

∑

l

∫
dt
[
(G0)

−1
nl (t, t)−ΣHF

nl (t, t)
]
G
′≷
lm(t, t′)

=
1

2

∑

l

∞∫

−∞

dt
[
(Σc)

>
nl

(
T, τ − t

)
G′<lm

(
T, t
)
− (Σc)

<
nl

(
T, τ − t

)
G′>lm

(
T, t
)]

. (B.0.5)

Having the collision integrals in this form, it is easier to deal with them. For
example, in order to compute the Fourier transform of Eq. (B.0.5) is enough to
make use of the convolution theorem.
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Replacing the functions (I<
nm)11 (and (I<

nm)12) in the Eq. (4.2.20) and Eq.
(4.2.21) by the 11 (12) component of the difference (sum) of the Fourier transform
of the right hand side of Eq. (B.0.5) and its hermitian conjugated we get.

[
∂

∂T
+ i(ǫn − ǫm) +

∂

∂T
ΣHF

11 (T )
∂

∂ω

]
G<

nm(ω, T )

= −i
[
ΣHF

12 (T )F †<nm(ω, T )− ΣHF
21 (T )F<

nm(ω, T )
]

− 1

2

[
∂ΣHF

12 (T )

∂T

∂

∂ω
F †<nm(ω, T ) +

∂ΣHF
21 (T )

∂T

∂

∂ω
F<

nm(ω, T )

]

− i

2

∑

l

[
{(Σc>

nl )11(ω, T )G<
lm(ω, T )− (Σc<

nl )11(ω, T )G>
lm(ω, T )}+

+ {G<
nl(ω, T )(Σc>

lm)11(ω, T )−G>
nl(ω, T )(Σc<

lm)11(ω, T )}+

+
{

(Σc>
nl )12(ω, T )F †<lm (ω, T )− (Σc<

nl )12(ω, T )F †>lm (ω, T )
}

+

+ {F<
nl(ω, T )(Σc>

lm)21(ω, T )− F>
nl(ω, T )(Σc<

lm)21(ω, T )}
]
, (B.0.6)

[
∂

∂T
+ i(ǫn + ǫm)− i2µ + i2ΣHF

11 (T )

]
F<

nm(ω, T )

= −iΣHF
12 (T )

[
G

<

nm(ω, T ) + G<
nm(ω, T )

]

− 1

2

∂ΣHF
12 (T )

∂T

∂

∂ω

[
G

<

nm(ω, T )−G<
nm(ω, T )

]

− i

2

∑

l

[{
(Σc>

nl )12(ω, T )G
<

lm(ω, T )− (Σc<
nl )12(ω, T )G

>

lm(ω, T )
}
−

− {G<
nl(ω, T )(Σc>

lm)12(ω, T )−G>
nl(ω, T )(Σc<

lm)12(ω, T )}+

+ {(Σc>
nl )11(ω, T )F<

lm(ω, T )− (Σc<
nl )11(ω, T )F>

lm(ω, T )}−

− {F<
nl(ω, T )(Σc>

lm)22(ω, T )− F>
nl(ω, T )(Σc<

lm)22(ω, T )}
]
. (B.0.7)

These two equations are the kinetic equations for the components of G′<nm introduced
in section 4.2. They display collisions under the assumption that the selfenergies
and the Green’s functions are sharply peaked about τ = 0. The generalization of
the discussion of the collision terms is presented elsewhere [36, 41].
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