
Faculty of Physics and Astronomy

University of Heidelberg

Diploma Thesis
in Physics

submitted by

Sascha Patrick Quanz

born in Eschwege

2004

A Unified Approach to the Computation of
Spacecraft Trajectories

—

A Software Tool for Mission Analysis (Simulation)

This diploma thesis has been carried out by Sascha Patrick Quanz at the

Astronomische Rechen-Institut
Mönchhofstrasse 12-14

69120 Heidelberg
Germany

in cooperation with the

European Space Agency (ESA)
European Space Research and Technology Center (ESTEC)

Directorate of Human Spaceflight
Development Department

Human Transportation and Re-entry Systems Division
2200 AG Noordwijk
The Netherlands

under the supervision of

Prof. Rainer Spurzem

Abstract

This diploma thesis demonstrates the feasibility of a unified physical and algorithmic model
for the computation of spacecraft trajectories. It shows that one set of differential equations
suffices to compute launch, re-entry, and classical satellite trajectories with high accuracy.
Substantiation for this approach is provided by a functioning software implementation. Since
this requires a thorough understanding of the forces acting on the spacecraft, a detailed
description of these is given and the underlying physical processes are discussed. By combining
atmosphere and gravitational field models with the presented unified formulation and with
an appropriate numerical integrator, accurate and reliable results can be obtained for all
flight phases, as is confirmed by comparison with examples from the available literature. The
diploma thesis concludes with a critical review of the unified approach, including possible
future applications and enhancements of the presented software tool.

Meinen Eltern

für ihre Liebe und immerwährende Unterstützung

Sascha P. Quanz

Manche Menschen sehen die Dinge, wie sie sind, und sagen:
‘Warum?’
Ich träume von einigen, die es nie gab, und sage:
‘Warum nicht?’

(John. F. Kennedy)

Contents

1 Introduction 13

2 The Classical Orbital Elements 15

3 Derivation of the Equations of Flight 18
3.1 Relative angular motion . 18
3.2 The equations of motion . 19

3.2.1 The planet centered coordinate system 19
3.2.2 The spacecraft centered coordinate system 20
3.2.3 The kinematic equations . 20
3.2.4 The force equations . 22

4 Forces Acting on a Spacecraft 26
4.1 The aerodynamic force ~A . 27

4.1.1 Drag, lift and side force and related moments about a reference reduc-
tion center . 27

4.1.2 The aerodynamic coefficients . 30
4.1.3 The computation of aerodynamic properties 30

4.2 The thrust ~T . 31
4.3 The resulting tangential and normal forces ~FT and ~FN 33

5 Atmosphere and Gravitational Field of the Earth 34
5.1 Models of the Earth atmosphere . 34

5.1.1 No atmosphere . 35
5.1.2 An analytical model . 35
5.1.3 The empirical NRLMSISE-00 model 36

5.2 Comparison of the atmosphere models . 38
5.3 The gravitational field of the Earth . 39

6 The Implementation 41
6.1 The general program architecture . 41

6.1.1 The input files . 41
6.1.2 The output files . 50
6.1.3 Program structure . 52

6.2 The numerical scheme: The Runge-Kutta algorithm 54

5

CONTENTS

7 The Results: Trajectories 57
7.1 Closed orbits . 57

7.1.1 Circular orbit (1) . 57
7.1.2 Circular orbit (2) . 60
7.1.3 Molniya orbit . 62
7.1.4 STARSHINE1 and STARSHINE2 orbit decay 65

7.2 Re-entry trajectories . 68
7.2.1 Generic re-entry trajectory (1) . 68
7.2.2 Generic re-entry trajectory (2) . 70
7.2.3 Soyuz capsule: Ballistic re-entry coming from the ISS 73

7.3 Launch trajectories . 75
7.3.1 Ariane 44LP: Launch in the equatorial plane 76
7.3.2 Soyuz: Launch from Kourou (1) . 83
7.3.3 Soyuz: Launch from Kourou (2) . 88

8 The Quality of the Numerical Integrator 93
8.1 The performance of the Runge-Kutta algorithm 94

8.1.1 Errors in the eccentricity . 94
8.1.2 Errors in the apogee and perigee . 99
8.1.3 Errors in the radius vector . 100
8.1.4 Errors in the angular momentum . 101
8.1.5 Errors in the latitude and azimuth . 101
8.1.6 Summary of the results . 102

8.2 The performance of other numerical integrators and comparison 103

9 Conclusions 106
9.1 Major results . 106
9.2 Possible enhancements of the software tool . 107
9.3 Future work . 107

A References 109

B Nomenclature 112

C Acronyms and Reference Frames 115

D The Source Code 116
D.1 The main program . 116
D.2 The functions . 141
D.3 The data bases . 162
D.4 Examples of the input files . 164

D.4.1 orbit input.txt . 164
D.4.2 manual input.txt . 164
D.4.3 launch input.txt . 165
D.4.4 Deorbit.txt . 167
D.4.5 spacecraft input.txt . 167
D.4.6 CD input.txt, CL input.txt . 167
D.4.7 pitch input.txt . 168

6

CONTENTS

D.4.8 physical model input.txt . 169
D.4.9 stop condition input.txt . 169

7

List of Figures

2.1 Definition of the classical orbital elements 15

3.1 a) Planet centered coordinate systems
b) Coordinate system describing the position of the spacecraft rela-
tive to the Earth . 20

3.2 Definition of the flight path angle γ, the heading ψ and the azimuth
of the relative velocity χ . 21

3.3 Definition of the primed coordinate system linked to the velocity vector 24

4.1 Typical spacecraft configuration and related forces 26
4.2 Comparison of different forces acting on a spacecraft 28
4.3 Definition of the different components of the aerodynamic force . . 29
4.4 Pressure coefficient distribution for a generic re-entry vehicle . . . 32
4.5 Friction lines and heat fluxes for a generic re-entry vehicle 32

5.1 Analytical model for the atmospheric density. 35
5.2 Evolution of the magnetic index Ap since 1947 37
5.3 Evolution of the 10.7 cm solar flux since 1947 37
5.4 Density profile of the Earth atmosphere for different models 38
5.5 Temperature profile of the Earth atmosphere for different models . 39

6.1 Illustration of the connection between initial orbit, de-orbit maneu-
ver and entry interface . 46

6.2 Flowchart showing the general structure of the software program . . 53

7.1 Circular Orbit (1): Altitude vs. Time 58
7.2 Circular Orbit (1): Longitude vs. Time 58
7.3 Circular Orbit (1): Relative Velocity vs. Time 58
7.4 Circular Orbit (1): Flight Path Angle vs. Time 59
7.5 Circular Orbit (1): Latitude vs. Time 59
7.6 Circular Orbit (1): Azimuth of the Relative Velocity vs. Time . . . 59
7.7 Circular Orbit (2): Altitude vs. Time 60
7.8 Circular Orbit (2): Longitude vs. Time 60
7.9 Circular Orbit (2): Relative Velocity vs. Time 61
7.10 Circular Orbit (2): Flight Path Angle vs. Time 61
7.11 Circular Orbit (2): Latitude and Azimuth of the Relative Velocity

vs. Time . 61

8

LIST OF FIGURES

7.12 Circular Orbit (2): Latitude vs. Longitude 62
7.13 Molniya Orbit: Altitude vs. Time . 62
7.14 Molniya Orbit: Relative Velocity vs. Time 63
7.15 Molniya Orbit: Latitude and Longitude vs. Time 63
7.16 Molniya Orbit: Flight Path Angle vs. Time 63
7.17 Molniya Orbit: Latitude and Azimuth of the Relative Velocity vs.

Time . 64
7.18 Molniya Orbit: Latitude vs. Longitude 64
7.19 Typical Molniya orbit: Reference ground-track 64
7.20 The STARSHINE1 satellite is released from the payload bay of a

Space Shuttle Orbiter. 65
7.21 STARSHINE1 orbit decay computation: Altitude vs. Time 66
7.22 STARSHINE1 orbit decay as computed from flight data analysis . . 67
7.23 STARSHINE2 orbit decay computation: Altitude vs. Time. 67
7.24 STARSHINE2 orbit decay as computed from flight data analysis . . 67
7.25 Generic re-entry Trajectory (1): Altitude vs. Time 68
7.26 Generic re-entry Trajectory (1): Altitude vs. Relative Velocity . . . 69
7.27 Reference case for the generic re-entry Trajectory (1) showing Alti-

tude vs. Relative Velocity . 69
7.28 Generic re-entry Trajectory (1): Relative Velocity vs. Time 69
7.29 Generic re-entry Trajectory (1): Flight Path Angle vs. Time 70
7.30 Generic re-entry Trajectory (1): Latitude, Longitude and Azimuth

of the Relative Velocity vs. Time . 70
7.31 Generic re-entry Trajectory (2): Altitude vs. Time 71
7.32 Generic re-entry Trajectory (2): Altitude vs. Relative Velocity . . . 71
7.33 Reference case for the generic re-entry Trajectory (2) showing Alti-

tude vs. Relative Velocity . 71
7.34 Generic re-entry Trajectory (2): Relative Velocity vs. Time 72
7.35 Generic re-entry Trajectory (2): Flight Path Angle vs. Time 72
7.36 Generic re-entry Trajectory (2): Latitude, Longitude and Azimuth

of the Relative Velocity vs. Time . 72
7.37 Soyuz re-entry coming from the ISS: Altitude vs. Time 74
7.38 Soyuz re-entry coming from the ISS: Relative Velocity vs. Time . . 74
7.39 Soyuz re-entry coming from the ISS: Flight Path Angle and Azimuth

of the Relative Velocity vs. Time . 75
7.40 Soyuz re-entry coming from the ISS: Latitude vs. Longitude. 75
7.41 Ariane 44LP Launch Trajectory: Pitch law 77
7.42 Reference pitch law for an Ariane 44LP launch 77
7.43 Ariane 44LP Launch Trajectory: Altitude vs. Time. 80
7.44 Reference trajectory (1) for an Ariane 44LP launch: Altitude vs.

Time . 80
7.45 Reference trajectory (2) for an Ariane 44LP launch: Altitude vs.

Time . 81
7.46 Ariane 44LP Launch Trajectory: Relative Velocity vs. Time 81
7.47 Reference trajectory (1) for an Ariane 44LP launch: Relative Ve-

locity vs. Time . 81
7.48 Ariane 44LP Launch Trajectory: Load Factor vs. Time 82

9

LIST OF FIGURES

7.49 Reference trajectory (1) for an Ariane 44LP launch: Load factor vs.
Time . 82

7.50 An Ariane 44LP lifting off from a launch pad in French Guiana . . 82
7.51 Soyuz Launch Trajectory (1): Pitch law 83
7.52 Reference pitch law for a Soyuz launch 84
7.53 Soyuz Launch Trajectory (1): Altitude vs. Time 86
7.54 Reference trajectory for a typical Soyuz launch: Altitude vs. Time 86
7.55 Soyuz Launch Trajectory (1): Latitude vs. Longitude 86
7.56 Soyuz Launch Trajectory (1): Relative Velocity vs. Time 87
7.57 Reference trajectory for a typical Soyuz launch: Relative Velocity

vs. Time . 87
7.58 Soyuz Launch Trajectory (1): Flight Path Angle and Azimuth of the

Relative Velocity vs. Time . 87
7.59 Soyuz Launch Trajectory (2): Pitch law 88
7.60 Reference pitch law for a Soyuz launch from Kourou 89
7.61 Soyuz Launch Trajectory (2): Altitude vs. Time 89
7.62 Reference trajectory for a Soyuz launch from Kourou: Altitude vs.

Time . 90
7.63 Soyuz Launch Trajectory (2): Relative Velocity vs. Time 90
7.64 Reference trajectory for a Soyuz launch from Kourou: Relative Ve-

locity vs. Time . 90
7.65 Soyuz Launch Trajectory (2): Load Factor vs. Time 91
7.66 Reference trajectory for a Soyuz launch from Kourou: Load Factor

vs. Time . 91
7.67 Soyuz Launch Trajectory (2): Flight Path Angle and Azimuth of the

Relative Velocity vs. Time . 91
7.68 Soyuz Launch Trajectory (2): Latitude vs. Longitude 92
7.69 Reference trajectory for a Soyuz launch from Kourou: Latitude vs.

Longitude . 92
7.70 A Soyuz rocket lifting off. (Courtesy of ESA) 92

8.1 Errors in the eccentricity for two different orbit configurations
(Three Point Method) . 95

8.2 Errors in the eccentricity for two different integration time steps
(Three Point Method) . 96

8.3 Errors in the eccentricity and underlying parameters (Three Point
Method) . 96

8.4 Errors in the eccentricity for two different orbit configurations
(Least Squares Method) . 98

8.5 Errors in the eccentricity for two different orbit configurations
(Runge-Lenz-Vector) . 99

8.6 Errors in the apogee and perigee for two different orbit configura-
tions
(Least Squares Method) . 99

8.7 Errors in the radius vector for an orbit with an eccentricity of 0.27 100
8.8 Errors in the radius vector for an orbit with an eccentricity of 0.58 100

10

LIST OF FIGURES

8.9 Errors in the angular momentum for two different orbit
configuration . 101

8.10 Errors in the latitude and the azimuth for an equatorial orbit with
an eccentricity of e=0.27. 102

8.11 Errors in the latitude and azimuth for an equatorial orbit with an
eccentricity of e=0.58. 102

8.12 Errors in the energy in a moderately perturbed binary system for
different mathematical schemes . 104

8.13 Errors in the energy in a strongly perturbed binary system for dif-
ferent mathematical schemes . 104

8.14 Errors in the eccentricity in a moderately perturbed binary system
for different mathematical schemes . 105

11

List of Tables

2.1 The six classical orbital elements. 16

4.1 Properties of aerodynamic prediction methods 31

5.1 Input variables for the NRLMSISE-00 atmosphere model 36
5.2 Zonal harmonic, tesseral harmonic and sectoral harmonic coeffi-

cients of the Earth . 40

6.1 Input variables and parameters of launch input.txt 42
6.2 Input variables and parameters of orbit input.txt 43
6.3 Input variables and parameters of manual input.txt 44
6.4 Input parameters of Deorbit.txt . 45
6.5 Input parameters of spacecraft input.txt 47
6.6 Input variables and parameters of CD input.txt and CL input.txt . 47
6.7 Input parameters of pitch input.txt . 48
6.8 Input parameters of physical model input.txt 49
6.9 Input parameters of stop condition input.txt 50
6.10 Output variables of Results.txt . 51
6.11 Output variables of Results2.txt . 51
6.12 Output variables of Results3.txt . 52
6.13 Coefficients of the 4th-order Runge-Kutta algorithm 55
6.14 Coefficients of the 8th-order Runge-Kutta algorithm 56

7.1 Parameters of the STARSHINE1 satellite 65
7.2 Parameters of the STARSHINE2 satellite 66
7.3 Comparison of the results for a Soyuz re-entry computation 73
7.4 Pitch law for the computation of the Ariane 44LP launch 76
7.5 Characteristics of the Ariane 44LP first stage booster combination 78
7.6 Characteristics of the Ariane 44LP second and third stage boosters 79
7.7 The drag coefficient CD of the Ariane 44LP launcher as a function

of the Mach number . 79
7.8 Pitch law (1) for the computation of a Soyuz launch from Kourou 83
7.9 Characteristics of the three stage Soyuz launcher 84
7.10 The drag coefficient CD of the Soyuz launcher as a function of the

Mach number . 85
7.11 Pitch law (2) for the computation of a Soyuz launch from Kourou 88

12

Chapter 1

Introduction

This diploma thesis deals with the computation of spacecraft trajectories. Its ambition is
to expand beyond the present recognized disparity of approaches for the achievement of
trajectory simulation. The current variety of methodologies and corresponding software im-
plementations is the result of an evolution that began decades ago as briefly described in the
following.

In general one can distinguish three different flight phases by physical processes that have
to be taken into account: The launch phase, the orbiting phase and the atmospheric re-
entry phase. Since each phase has unique physical characteristics and properties the tools for
computing the trajectories have become increasingly specialized, in particular for the orbiting
and re-entry phases.

The orbiting phase was mainly the field of interest for mathematicians who focused on im-
proving the prediction accuracy of satellite trajectories with high altitudes by implementing
different and sometimes very arduous and complex types of orbit perturbations. These en-
hanced models for the computation of so-called Keplerian orbits are used for satellites when
changes in the major axes and the eccentricity of the orbit or the overall lifetime of the
satellite are of major interest. Unintended changes in the orbital elements require correction
maneuvers involving the firing of thrusters. In that context a detailed knowledge of the initial
orbit provides the basis for an optimal maneuver. The better the correction maneuvers can
be planned, the more rarely they need to be carried out, which finally leads to an increased
lifetime of the satellite as the use of fuel can be minimized.

The re-entry phase was accurately analyzed by scientists and engineers, who were concerned
with the safe recovery of a space vehicle. This phase requires a good knowledge of the velocity
and the position of the spacecraft in order to study the deceleration and the heating during
the atmospheric re-entry. Here, the classical equations of motion, as used for the computation
of a Keplerian orbit, are not well suited as normally they do not consider the importance of
atmospheric conditions and other physical effects like drag and lift. Consequently different
approaches to describe a re-entry trajectory with high accuracy have been preferred.

In the process of improving the computation models for both phases separately, the dif-
ferences between them have increased. In [3] in the introduction to chapter 15 Vinh et al.
underline:

“The gap got wider as the two theories became more and more sophisticated.
Now the two groups, one consisting mostly of mathematicians, and one consisting
mostly of physicists, seldom reference the other’s group work.”

13

CHAPTER 1. INTRODUCTION

This diploma thesis attempts to overcome this gap by demonstrating the suitability of a
single formulation for both exo-atmospheric and re-entry computations. This still does not
consider the launch phase but, as will be shown in the course of this work, also launch tra-
jectories (for which the altitude-time profile and the related thrust-mass ratio of the launcher
are of major importance) can be handled with the same and therefore “unified” physical and
algorithmic formulation.

Before addressing the unified approach in detail a review of the classical description of orbits
is given in the next chapter. In chapter 3 the derivation of the required set of differential
equations for the unified formulation is explained in detail. The different forces acting on a
spacecraft are described in chapter 4. These forces are an essential part for the computation
of the trajectories. Chapter 5 deals with models of the Earth atmosphere and its gravitational
field. The models are required to quantify the forces acting on the vehicle. Chapter 6 describes
the general architecture of the computer program, developed in order to demonstrate the
feasibility of the unified approach. Furthermore, a short introduction to the implemented
numerical integration scheme is given. In chapter 7 the results of the trajectory computations
are presented. Examples for all three flight phases are given and are compared to results from
the available literature. Chapter 8 deals with the quality and the stability of the numerical
algorithm and compares its results to those of other numerical integrators commonly used for
astrophysical computations. Finally, chapter 9 summarizes the results and gives an overview
of possible future enhancements and applications.

14

Chapter 2

The Classical Orbital Elements

For a complete solution of Kepler’s equations for a two-body system (e.g. a planet and an
orbiting spacecraft) six variables are required. Instead of using three cartesian variables for

Figure 2.1: Definition of the classical orbital elements describing a so-called Ke-
plerian orbit. The semi-major axis a and the eccentricity e of the orbit are not
depicted. (Courtesy of ESA)

the relative position and three for the velocity of the spacecraft, it is more convenient to
use the six classical orbital elements listed in Table 2.1. They are normally used for the
characterization of a pure so-called Keplerian orbit as shown in Figure 2.1.

15

CHAPTER 2. THE CLASSICAL ORBITAL ELEMENTS

Variable Meaning
a semi-major axis
e eccentricity
i inclination
Ω right ascension of the ascending node
ω argument of perigee
M mean anomaly (with M = n(t− t0), n is the mean motion)

Table 2.1: The six classical orbital elements.

The semi-major axis a describes the size of the ellipse while the eccentricity e describes its
shape. The relation between the two parameters is given by e = 1− rperi/a, where rperi refers
to the absolute value of the radius vector when pointing in the direction of the periapsis. The
inclination i is the angle between the z-axis of the equatorial plane and the angular momentum
vector of the orbit. The right ascension Ω is the angle between the Vernal Equinox (the x-axis
of the equatorial plane) and the ascending node, representing the point where the satellite
crosses the equatorial plane coming from the south. The angle between the ascending node
and rperi is called the argument of perigee ω.

For non-inclined orbits (i = 0) the angles Ω and ω are poorly defined as the equatorial plane
and the orbital plane become identical. Hence, a variation of the six orbital elements must
be used. The intricacies of a detailed implementation of this variation, however, will not be
addressed here.

The so-called Lagrange equations for the differential change of the six classical parameters
are given below in (2.1)-(2.6). The derivation of these formulae can be found in most books
on classical orbital mechanics, as for instance [1] and [2].

da

dt
=

2
na

∂U

∂M
(2.1)

de

dt
=

1− e2

na2e

∂U

∂M
−
√

1− e2

na2e

∂U

∂ω
(2.2)

di

dt
=

−1
na2

√
1− e2 sin i

[
∂U

∂Ω
+ cos i

∂U

∂ω

]
(2.3)

dΩ
dt

=
1

na2
√

1− e2 sin i

∂U

∂i
(2.4)

dω

dt
=

√
1− e2

na2e

∂U

∂e
− cos i

na2
√

1− e2 sin i

∂U

∂i
(2.5)

dM

dt
= n− 2

na

∂U

∂a
− 1− e2

na2e

∂U

∂e
(2.6)

In these equations U represents the gravitational potential whose resulting conservative
force governs the satellite’s trajectory. For given initial conditions the orbit of the spacecraft
can be calculated by integrating the Lagrange equations with respect to time. The resulting
trajectory is a perfect conic section whose shape depends only on the initial values as long

16

CHAPTER 2. THE CLASSICAL ORBITAL ELEMENTS

as U is spherically symmetric. Equations (2.1)-(2.6) can also be applied to the analysis
of disturbed and therefore non-Keplerian orbits as long as additional disturbing forces are
conservative as well (e.g. third body perturbations or differences in ~FG due to non-spherical
U). The influence of solar radiation pressure or atmospheric drag on the different variables,
however, can not be intuitively addressed, although these effects are taken into account in
most modern orbit propagation tools.

For the computation of the re-entry and the launch phase the classical orbital elements are
not adequate. For these trajectories the shape of the conic section (which changes rapidly)
is of minor interest and other variables like the velocity and the position of the spacecraft
are more relevant. For a unified physical and mathematical approach to the computation of
spacecraft trajectories a different formulation being applicable to both the exo-atmospheric
and atmospheric phases must be used. Already commonly used for re-entry computations a
formulation fulfilling this requirement is presented in the following chapter.

17

Chapter 3

Derivation of the Equations of
Flight

In the following the relevant equations of motion describing a spacecraft trajectory are derived.
Although currently used only for re-entry computations, these equations can be applied to
all flight phases as demanded for a unified formulation.

The motion of the vehicle is defined by the position vector ~r(t), the velocity vector ~V (t)
and the mass m(t). At each instant, the force ~F acting on the spacecraft consists of three
main contributions. These are the thrust ~T , provided by the spacecraft’s engines, the aero-
dynamic force ~A, resulting from the presence of an atmosphere, and the gravitational force
~FG(t, ~r) = m(t) · ~g(~r). The following relation results

~F (t, ~r) = ~T + ~A + m(t) · ~g(~r) . (3.1)

Also, with respect to an inertial system, the basic vector equation applies

m(t) · d~V

dt
= ~F (t, ~r) . (3.2)

Since the spacecraft might burn fuel during in-orbit maneuvers or even eject structural com-
ponents (e.g. lower stages of a rocket or the fairing), its mass is time dependent as shown in
equation (3.2).

After presenting some general ideas concerning the transformation of a vector from a
Galilean coordinate system to a rotating coordinate system, a suitable reference frame for
computing trajectories is defined. In this reference frame the resulting vector equations based
on (3.1) and (3.2) are specialized into six scalar equations that can be integrated numerically.

3.1 Relative angular motion

Consider two different coordinate systems: One is fixed and the second system is rotating
with respect to the first one. Let (X-Y -Z) denote the fixed system and (I-J-K) represent
the rotating system. A vector ~Λ in the rotating system can the be expressed as

~Λ = ΛI · ~eI + ΛJ · ~eJ + ΛK · ~eK (3.3)

18

CHAPTER 3. DERIVATION OF THE EQUATIONS OF FLIGHT

with the unit vectors ~e pointing in the direction of I, J and K. While taking the time
derivative of the vector ~Λ with respect to the non-rotating system it has to be considered
that the unit vectors are also time dependent. Thus,

d~Λ
dt

=

(
dΛI

dt
~eI +

dΛJ

dt
~eJ +

dΛK

dt
~eK

)
+

(
ΛI

d~eI

dt
+ ΛJ

d~eJ

dt
+ ΛK

d~eK

dt

)
. (3.4)

Since the unit vectors remain fixed with respect to the rotating system, their linear velocity
can be written as

d~eI

dt
= ~Ω× ~eI ,

d~eJ

dt
= ~Ω× ~eJ ,

d~eK

dt
= ~Ω× ~eK (3.5)

where ~Ω is the rotation vector. Taking this into account and defining

δ~Λ
δt

: =
dΛI

dt
~eI +

dΛJ

dt
~eJ +

dΛK

dt
~eK

being the time derivative of ~Λ with respect to the rotating system, equation (3.4) can be
written as

d~Λ
dt

=
δ~Λ
δt

+ ~Ω× ~Λ . (3.6)

Equation (3.6) describes the transformation of a vector from a stationary coordinate system
to another rotating system and provides the basis for the following derivations.

3.2 The equations of motion

3.2.1 The planet centered coordinate system

Since the motion of a spacecraft with respect to the Earth is sought, the planet has to be
considered as a rotating reference frame. The rotation vector ~ΩIJK can be defined as pointing
along the K-axis with I and J describing the equatorial plane. The non-rotating coordinate
system (X-Y -Z) has the same orientation. The origin of both systems is located at the center
of gravity, i.e. in the center of the planet. Figure 3.1a depicts both coordinate systems in
detail.

Considering the results of the previous section, the time derivative of the position vector ~r
can be written as

d~r

dt
= ~V =

δ~r

δt
+ ~Ω× ~r (3.7)

and for the velocity ~V one obtains consequently

d~V

dt
= ~a =

δ

δt

(
δ~r

δt
+ ~Ω× ~r

)
+ ~Ω×

(
δ~r

δt
+ ~Ω× ~r

)
. (3.8)

It is assumed that
δ~Ω
δt

= 0 .

Henceforth, equation (3.8) becomes

d~V

dt
= ~a =

δ2~r

δt2
+ 2 ~Ω× δ~r

δt
+ ~Ω× (~Ω× ~r) . (3.9)

19

CHAPTER 3. DERIVATION OF THE EQUATIONS OF FLIGHT

Figure 3.1: a) Planet centered coordinate systems: The fixed system (X-Y-Z) and
the rotating system (I-J-K). CE denotes the center of the planet (e.g. the Earth)
and ~ΩIJK is the rotation vector pointing along the ~K- and ~Z-axis. b) Coordinate
system describing the position of the spacecraft relative to the Earth. l and L are
geographic longitude and geographic latitude and ~r is the position vector pointing
from the center of the Earth to the center of gravity of the spacecraft Cg, where
the spacecraft centered coordinate system (i-j-k) has its origin.

Based on (3.9) the vector equation (3.2) for the planet fixed coordinate system can be written
as

m(t)
d~V

dt
= ~F − 2m(t) ~Ω× ~V −m(t) ~Ω× (~Ω× ~r) , (3.10)

where ~V is the velocity relative to the Earth’s rotating atmosphere and the time derivative
is taken with respect to the Earth fixed coordinate system.

3.2.2 The spacecraft centered coordinate system

In order to evaluate the different vectors in equation (3.10) a new coordinate system (i-j-k)
linked to the spacecraft is defined. The origin of this coordinate system is located at the
center of gravity of the spacecraft Cg. The i-axis is pointing along the position vector ~r, the
j-axis lies in the equatorial plane (I-J) and is positive in the direction of motion and the
k-axis completes the right-handed system. The basis vectors can be written as

~i =
−−−→
CECg

r
, ~k =

∂~i

∂L
, ~j = ~k ×~i .

Figure 3.1b shows the position of the spacecraft relative to the Earth and also the connected
coordinate system (i-j-k). CE stands for the center of the Earth and (I-J-K) is the equatorial
reference frame. L and l can be identified as geographic latitude and geographic longitude.

3.2.3 The kinematic equations

Having introduced suitable coordinate systems the first three equations governing the motion
of a spacecraft can be derived. These are the so-called kinematic equations. Figure 3.1b

20

CHAPTER 3. DERIVATION OF THE EQUATIONS OF FLIGHT

Figure 3.2: Definition of the flight path angle γ, the heading ψ and the azimuth
of the relative velocity χ. The center of gravity of the spacecraft Cg lies in the
horizontal plane defined to be perpendicular to the radius vector ~r.

shows that the position of the spacecraft relative to the Earth centered coordinate system is
defined by the norm of the position vector ~r, the latitude L, and the longitude l. However, in
order to describe the orientation of the velocity vector ~V relative to the spacecraft centered
coordinate system (and thus relative to the planet centered system as well), three additional
variables have to be introduced. First, the flight path angle γ measured between the local
horizontal plane (that is, the plane passing through the vehicle and being orthogonal to the
position vector ~r) and the velocity vector ~V . Second, the heading ψ being the angle between
the local parallel of latitude and the projection of ~V on the horizontal plane. And finally, the
azimuth of the relative velocity χ defined as the angle between the direction of local north
and the projection of ~V on the local horizontal plane. From these definitions it arises that
the sum of azimuth χ and heading ψ always results in 90◦. Figure 3.2 shows the three angles
in detail.

Referring to the spacecraft centered coordinate system, one can now write

~r = r ~ei (3.11)

and respectively

~V = (V sin γ)~ei + (V cos γ sinχ)~ej + (V cos γ cosχ)~ek . (3.12)

In the same reference frame the angular velocity of the Earth can be written as

~Ω = (Ω sinL)~ei + (Ω cosL)~ek . (3.13)

Thus, one gets

~Ω× ~V = −(ΩV cos γ cosL sinχ)~ei + Ω V (sin γ cosL− cos γ sinL cosχ)~ej (3.14)
+(ΩV cos γ sinL sinχ)~ek

21

CHAPTER 3. DERIVATION OF THE EQUATIONS OF FLIGHT

and accordingly

~Ω× (~Ω× ~r) = −(Ω2 r cos2 L)~ei + (Ω2 r sinL cosL)~ek . (3.15)

In order to take the time derivative of the vectors ~r and ~V with respect to the planet fixed
system (I-J-K) the angular velocity vector ~Ω′ of the spacecraft centered coordinate system
(i-j-k) needs to be evaluated. The spacecraft centered system can be obtained from the fixed
system by a rotation l about the positive K-axis followed by a rotation L about the negative
J-axis. Hence, the angular velocity ~Ω′ of the rotating system (i-j-k) is

~Ω′ =

(
sinL

dl

dt

)
~ei −

(
dL

dt

)
~ej +

(
cosL

dl

dt

)
~ek . (3.16)

Following equation (3.5) the time derivatives of the unit vectors of the spacecraft centered
coordinate system are obtained

d~ei

dt
= ~Ω′ × ~ei =

(
cosL

dl

dt

)
~ej +

(
dL

dt

)
~ek (3.17)

d~ej

dt
= ~Ω′ × ~ej = −

(
cosL

dl

dt

)
~ei +

(
sinL

dl

dt

)
~ek (3.18)

d~ek

dt
= ~Ω′ × ~ek = −

(
dL

dt

)
~ei −

(
sinL

dl

dt

)
~ej . (3.19)

Taking into account the results in (3.17)-(3.19) the time derivative of the position vector ~r
can now be expressed via

d~r

dt
= ~V =

(
dr

dt

)
~ei +

(
r cosL

dl

dt

)
~ej +

(
r

dL

dt

)
~ek . (3.20)

Comparing (3.20) to (3.12) leads directly to three scalar equations, the so called kinematic
equations:

dr

dt
= V sin γ (3.21)

dl

dt
=

V cos γ sinχ

r cosL
(3.22)

dL

dt
=

V cos γ cosχ

r
(3.23)

3.2.4 The force equations

Three out of the six equations needed to describe the path of a body moving through space
have been found in (3.21)-(3.23). Three more equations are required and they will be derived
in this section. For that purpose use is made of equation (3.1) in connection with a description
of the forces acting on a spacecraft in the spacecraft centered coordinate system.

For the gravitational force one gets directly

~FG(t, ~r) = −m(t) g(~r)~ei . (3.24)

22

CHAPTER 3. DERIVATION OF THE EQUATIONS OF FLIGHT

In the following it is assumed that the aerodynamic force ~A and the thrust ~T can be
projected into one component acting parallel to the velocity vector ~V and another component
acting perpendicular to it. The latter one lies in the (~r-~V)-plane. Hence, a tangential force
~FT and a normal force ~FN , acting along and in a direction orthogonal to ~V respectively, can
be defined. A detailed qualitative analysis of these forces is given in the next chapter.

Following equation (3.12) the tangential force can be written as

~FT = (FT sin γ)~ei + (FT cos γ sinχ)~ej + (FT cos γ cosχ)~ek . (3.25)

If the trajectory is contained in one single plane (i.e. no changes in the orbital plane during
the flight), the vector ~FN lies always in the (~r-~V)-plane. In this case a lateral component of
the force does not exist. If, however, the vector ~FN is rotated about the velocity vector ~V ,
a lateral component of ~FN is created. This leads to an out-of-plane motion. The resulting
angle between the vertical plane, i.e. the (~r-~V)-plane, and the normal force ~FN is called
the bank angle µ. Now, in order to identify the components of the force ~FN with respect
to the spacecraft centered coordinate system (i-j-k), a primed coordinate system (i′-j′-k′) is
introduced. If a bank angle µ 6= 0 is considered, the normal force can be split in a component
FN cos(µ) lying in the vertical plane and being orthogonal to ~V and a second component
FN sin(µ) being orthogonal to the vertical plane. Based on these components the primed
coordinate system is defined by i′ pointing in the direction of FN cos(µ), j′ being parallel to
~V and k′ pointing along FN sin(µ). Figure 3.3 shows the primed coordinate system, as well as
the connected forces and the bank angle. Formally the primed system (i′-j′-k′) can be deduced
from the system (i-j-k) by a rotation ψ in the horizontal plane, followed by a rotation γ in
the vertical plane. Both rotations can be described by the following transformation matrix
equation

i
j
k

 =

1 0 0
0 cosψ − sinψ
0 sin ψ cosψ

cos γ sin γ 0
− sin γ cos γ 0

0 0 1

i′

j′

k′

or

i
j
k

 =

cos γ sin γ 0
− sin γ cosψ cos γ cosψ − sinψ
− sin γ sinψ cos γ sinψ cosψ

i′

j′

k′

 .

Since in the primed system the components of the normal force ~FN are

i′ = FN cosµ , j′ = 0 , k′ = FN sinµ (3.26)

this force can be written with respect to the spacecraft centered coordinate system as

~FN = (FN cosµ cos γ)~ei − (FN cosµ sin γ cosψ + FN sinµ sinψ)~ej (3.27)
− (FN cosµ sin γ sinψ − FN sinµ cosψ)~ek

or equivalently

~FN = (FN cosµ cos γ)~ei − (FN cosµ sin γ sinχ + FN sinµ cosχ)~ej (3.28)
− (FN cosµ sin γ cosχ− FN sinµ sinχ)~ek

if the azimuth of the relative velocity χ is considered instead of the heading ψ. Keeping this
in mind, equation (3.12) can be revisited and the time derivative of the velocity vector ~V can

23

CHAPTER 3. DERIVATION OF THE EQUATIONS OF FLIGHT

Figure 3.3: Definition of the primed coordinate system linked to the velocity vector.
If the normal force ~FN , usually lying in the vertical plane and being perpendicular
to the velocity, is rotated about the velocity vector, the resulting angle between the
normal force and the vertical plane is called the bank angle µ. The newly created
lateral component of the force FN sin(µ) leads to an out-of-plane motion.

be taken. To that end the relations given in (3.17)-(3.19), (3.22) and (3.23) are used resulting
in

d~V

dt
=

(
sin γ

dV

dt
+ V cos γ

dγ

dt
− V 2

r
cos2 γ

)
~ei

+

(
cos γ sinχ

dV

dt
− V sin γ sinχ

dγ

dt
− V cos γ cosχ

dχ

dt

+
V 2

r
cos γ sinχ

(
sin γ − cos γ cosχ tan L

))
~ej (3.29)

+

(
cos γ cosχ

dV

dt
− V sin γ cosχ

dγ

dt
+ V cos γ sinχ

dχ

dt

+
V 2

r
cos γ

(
sin γ cosχ + cos γ sin2 χ tanL

))
~ek .

By substituting into the basic equation (3.10) and considering equations (3.14) and (3.15) as
well as those for the forces (3.24), (3.25) and (3.28), one obtains the following three scalar
equations:

sin γ
dV

dt
+ V cos γ

dγ

dt
− V 2

r
cos2 γ (3.30)

=
FT

m
sin γ +

FN

m
cosµ cos γ − g + 2 Ω V cos γ cosL sinχ + Ω2 r cos2 L

24

CHAPTER 3. DERIVATION OF THE EQUATIONS OF FLIGHT

cos γ
dV

dt
− V sin γ

dγ

dt
− V cos γ cotχ

dχ

dt
+

V 2

r
cos γ

(
sin γ − cos γ cosχ tanL

)

=
FT

m
cos γ − 1

m

(
FN cosµ sin γ + FN sinµ cotχ

)
(3.31)

−2ΩV

sinχ

(
sin γ cosL− cos γ sinL cosχ

)

cos γ
dV

dt
− V sin γ

dγ

dt
+

V cos γ

cotχ

dχ

dt
+

V 2

r
cos γ

(
sin γ +

cos γ sinχ tanL

cotχ

)

=
FT

m
cos γ − 1

m

(
FN cosµ sin γ − FN sinµ

cotχ

)
(3.32)

−2 ΩV
cos γ sinL

cotχ
− Ω2 r

sinL cosL

cosχ

These equations can be solved for the derivatives dV/dt, dγ/dt and dχ/dt leading to

dV

dt
= −g sin γ +

1
m

FT + Ω2 r cosL
(

sin γ cosL− cos γ sinL cosχ
)

(3.33)

dγ

dt
= − g

V
cos γ +

1
mV

FN cosµ +
V

r
cos γ + 2 ΩcosL sinχ (3.34)

+
Ω2 r cosL

V

(
cos γ cosL + sin γ sinL cosχ

)

dχ

dt
= − 1

mV
FN

sinµ

cos γ
+

V

r
cos γ tanL sinχ (3.35)

+2Ω
(

sinL− tan γ cosL cosχ
)

+
Ω2 r

V

sinL cosL sinχ

cos γ

These three equations are normally referred to as force equations and together with (3.21)-
(3.23) they form a set of six differential equations describing the motion of a spacecraft with
respect to a rotating planet, e.g. the Earth.

The derived equations cover all types of trajectories relevant for the course of this work.
But before this can be demonstrated a better understanding of the different forces a vehicle
encounters on its way through space is required. Therefore the next chapter describes the
origin, influence and contribution to FN and FT of these forces.

25

Chapter 4

Forces Acting on a Spacecraft

Prior to a description of the different forces and their influence on a spacecraft, a detailed look
at the spacecraft itself is provided by Figure 4.1 representing a generic spacecraft configuration
(not necessarily representative of a launch vehicle!). x and z define a coordinate system having

Figure 4.1: Typical spacecraft configuration and related forces. x and z define
a coordinate system related to the spacecraft’s symmetry axis. The thrust ~T is
normally aligned with the main body axis x. Cp indicates the center of pressure

where the aerodynamic force is applied. This force can be split into lift ~L and drag
~D components. Cg represents the center of gravity of the spacecraft and ~FG the
gravitational force. α is the angle of attack, measured between the x-axis and the
velocity ~V . γ represents the flight path angle, already introduced in the previous
chapter. ϑL is the local pitch angle and is defined between the local horizon and
the main body axis of the spacecraft.

its origin in the center of gravity of the spacecraft Cg with x running along the main body
axis and z lying in the vertical plane. Cp indicates the center of pressure, the point at which
the resulting aerodynamic force acts. The flight path angle γ is the angle between the local

26

CHAPTER 4. FORCES ACTING ON A SPACECRAFT

horizon and the velocity vector ~V . The angle of attack α is measured between the velocity
vector and the x-axis of the spacecraft. By positioning the center of gravity ahead the center
of pressure the spacecraft is stabilized as for increasing α the aerodynamic force creates a
restoring moment about the center of gravity that tends to bring the spacecraft back to its
initial attitude. The local pitch angle ϑL is defined as the angle between the local horizon
and the x-axis. This angle plays a major role in the computation of launch trajectories as by
following a preprogrammed pitch law, as part of the guidance strategy, the rocket is led to
the desired injection parameters (see also chapter 6.1.1,5 and chapter 7.3).

Keeping these definitions in mind the different forces acting on the spacecraft can be in-
troduced. These forces have numerous origins and they can vary over a wide range of values
by orders of magnitude depending on the actual flight regime. The main contributions to a
resulting force are:

• The gravitational force ~FG, acting at the center of gravity. For orbits with high alti-
tudes or long orbit durations not only the gravitational pull of the Earth but also the
gravitational influence of the moon, the sun and other planets do effect the trajectory.

• The aerodynamic force ~A, acting at the center of pressure. It can be decomposed
into a lift ~L, a drag ~D and a side force component. The latter one is not depicted in
Figure 4.1. The aerodynamic force results from the presence of an atmosphere and has
great influence during the ascent and the atmospheric re-entry of the vehicle where its
magnitude is comparable to that of the gravitational force.

• The thrust ~T , delivered by the spacecraft’s engines. This vector is usually aligned with
the x-axis of the spacecraft for structural reasons, although its direction can vary due
to gimballing of the engines’ nozzles.

For high precision orbit and trajectory predictions also other contributions like solar and
Earth radiation pressure or relativistic effects have to be taken into account. A detailed
analysis of these and other additional forces can be found in [14]. The main focus here is on
the three forces mentioned above. However, only the gravitational influence of the Earth is
considered is the following while that of the sun and the moon is neglected. That this it at
least justified for low Earth orbits (LEO) is shown in Figure 4.2, where a comparison between
the influence of different forces is provided.

Following the assumptions made above a resulting force can be written as

~Fresult = ~FG + ~A + ~T (4.1)

as previously defined in (3.1). A representation of the aerodynamic force ~A in terms of its
tangential and normal components ~FT and ~FN is detailed in the following pages.

4.1 The aerodynamic force ~A

4.1.1 Drag, lift and side force and related moments about a reference re-
duction center

Essentially, the aerodynamic force results from friction and pressure forces. With respect
to the (x-y-z) coordinate system defined in Figure 4.1 the aerodynamic force can be split
into a so-called axial force (for which another nomination is tangential force) ~FA, pointing in

27

CHAPTER 4. FORCES ACTING ON A SPACECRAFT

6.4 7.8 9.6 11.8 14.5 17.9 21.9 27.0 33.1 40.7 50.0
Distance from the center of the Earth [1000 km]

10-20

10-15

10-10

10-5

100

A
cc

el
er

at
io

n
[k

m
/s

2]

 GM

J2,0

J2,2

J6,6

 J18,18

 Moon

 Sun

 Venus

 Jupiter

 Solar
 Radiation
 Pressure

 Albedo

 Relativity

 Dynamic
 Solid Tide

 Drag (min)

 Drag (max)

 Iridium
 (780 km)

 Lageos GPS TDRS

Figure 4.2: Comparison of different forces acting on a spacecraft. GM refers to
the Earth gravitational field with J2,0, J2,2, J6,6 and J18,18 being correction terms
due to the oblateness of the Earth. Furthermore the strength of the gravitational
pull of other celestial bodies, the influence of the Earth albedo and the magnitude
of relativistic effects are shown. For LEOs the influence of the moon, the sun
and other celestial bodies can be neglected. (Taken from [8] with corrections from
the author)

28

CHAPTER 4. FORCES ACTING ON A SPACECRAFT

negative x-direction, a normal force ~FN , pointing in negative z-direction and a side force ~FS ,
pointing along the y-axis. Mathematically these forces are defined as

~FA = −1
2
ρSCAV 2~ex , ~FN = −1

2
ρSCNV 2~ez , ~FS =

1
2
ρSCSV 2~ey (4.2)

with S being a reference area, ρ standing for the upstream air density, V being the norm
of the relative velocity vector and C being the aerodynamic coefficient for each force. More
information about the aerodynamic coefficients is given in the next section.

In the same reference frame one can define different moments related to the axes: The
rolling-moment, around the x-axis of the spacecraft, the pitching-moment around the y-axis
and the yawing-moment around the z-axis. Figure 4.3 shows the reference frame and the
related moments and forces.

Figure 4.3: Definition of the different components of the aerodynamic force for
a coordinate system linked to the spacecraft main body axis. For each axis the
related moment is depicted.

While the different moments are always defined abound the spacecraft body axes, a different
coordinate system for the decomposition of the aerodynamic force can be specified. One
possible reference frame is linked to the velocity. Considering the force equations (3.33)-
(3.35) this reference frame proves to be most suitable and it leads directly to the general
definition of lift and drag (see also Figure 4.1).

Drag is defined to be the component of the aerodynamic force opposing the direction of
motion. Therefore it is antiparallel to the velocity vector. Lift is the component of the
force that is perpendicular to the velocity and also perpendicular to the y-axis. The third
component, not represented in Figure 4.1 (it would point outwards of the page), is still called
the side force. Following the definitions in (4.2) drag and lift can be written as

~D = −1
2
ρSCDV 2~eV , ~L =

1
2
ρSCLV 2~eL (4.3)

29

CHAPTER 4. FORCES ACTING ON A SPACECRAFT

with ~eV pointing in the direction of the velocity and ~eL being the unit vector in the direction
of the lift. Again, S is a reference area, ρ is the upstream air density and V represents the
norm of the relative velocity vector.

4.1.2 The aerodynamic coefficients

From (4.3) the drag coefficient CD and the lift coefficient CL result in

CD =
2D

SρV 2
, CL =

2L

SρV 2
. (4.4)

These coefficients refer to the total aerodynamic force like those of equation (4.2), but
generally they assume different values due to the different reference frames. It should be
emphasized that the computation of the aerodynamic coefficients, e.g. CL and CD, for a
real spacecraft can be challenging. In particular for a re-entry vehicle different flight regimes
featuring different environmental conditions must be considered as the spacecraft goes from
hypersonic (with speeds roughly in excess of Mach 6) and supersonic speed through transonic
and subsonic speed for the approach and landing. In order to compute the global aerody-
namic coefficients the actual force acting on every surface element of the spacecraft must
be calculated, before it is possible to integrate over the whole area. Here, the friction and
the pressure of the streaming air do not only depend on the altitude and attitude of the
spacecraft, as they also change with the position on the spacecraft, where they are measured.
Consequently, a general formulation of the aerodynamic coefficients does usually depend on
the angle of attack, the Mach number and also on the Reynolds number of the upstream flow.

4.1.3 The computation of aerodynamic properties

In order to compute the aerodynamic properties of a spacecraft the governing equations
of fluid mechanics are required. They are derived from statements of the conservation of
mass, momentum and energy for an arbitrary control volume. For cylindrical coordinates the
following Navier-Stokes equations in conservation forms are obtained:

∂

∂t
(W) +∇F (W) = ∇N(W) + H(W) (4.5)

with

W =

ρ
ρuz

ρur

ρE

being the vector of the conservation variables ρ (density), ur and uz (radial and axial com-
ponent of the velocity) and E (total energy). The other terms in (4.5) can be expressed
as

Fz(W) =

ρuz

ρu2
z + p

ρuzur

(ρE + p)uz

 , Fr(W) =

ρur

ρuruz

ρu2
r + p

(ρE + p)ur

 , Nz(W) =

0
τzz

τzr

uzτzz + urτzr

 ,

30

CHAPTER 4. FORCES ACTING ON A SPACECRAFT

Nr(W) =

0
τrz

τrr

uzτzr + urτrr

 and H(W) =

0
0

− τθθ
r

0

with p representing the pressure and the included tensor components

τzz = µtot

[
2
∂uz

∂z
− 2

3
(∇u)

]
, τzr = µtot

[
∂uz

∂r
+

∂ur

∂z

]
,

τrr = µtot

[
2
∂ur

∂r
− 2

3
(∇u)

]
, τθθ = µtot

[
2
ur

r
− 2

3
(∇u)

]
.

Here, µ is the dynamic viscosity of the fluid. These equations are based on the assumption
that the flow is axis symmetric with respect to the spacecraft body axis. Turbulence is
not considered. The treatment of turbulence is usually accomplished by taking into account
additional transport equations of variables relevant for the definition of an effective turbulent
viscosity, e.g. k and ε which result in an equivalent (increased) flow viscosity. In [25] a
complete derivation of the Navier-Stokes equations can be found.

Figure 4.4 and Figure 4.5 show the results of a typical computation of aerodynamic proper-
ties for a generic spacecraft: Figure 4.4 represents the distribution of the pressure coefficient,
while Figure 4.5 depicts the connected friction lines and heat fluxes. These figures were
generated with a laminar Navier-Stokes approach, assuming perfect gas conditions for the
hypersonic flight regime (Mach 6). The angle of attack was α = 40◦. By varying these con-
ditions different values and distributions for the pressure coefficient and the friction lines are
obtained. From these results the aerodynamic coefficients can be derived as a function of
the Mach number and the angle of attack. In order to illustrate the complexity of the task
Table 4.1 provides a comparison of different aerodynamic prediction methods.

Level Type Limitation Complexity Computation Time
0 empirical qualitative algebraic seconds
1 linear small perturbations algebraic minutes
2 inviscid no separation differentials hour(s)
3 Navier-Stokes no restriction partial differential hours/days

Table 4.1: Properties of aerodynamic prediction methods. (Taken from [25])

4.2 The thrust ~T

As previously mentioned the main thrust of the spacecraft is normally aligned with the main
body axis for structural reasons. However, it is possible to change the direction of the thrust
to a certain amount by gimballing the engines’ nozzles, assisting in the execution of flight
maneuvers.

In a reference frame linked to the velocity vector, the tangential and normal components of
the thrust can be expressed as

~TT = T cos(α)~eV , ~TN = T sin(α)~eL (4.6)

31

CHAPTER 4. FORCES ACTING ON A SPACECRAFT

Figure 4.4: Pressure coefficient distribution for a generic re-entry vehicle for the
hypersonic flight regime with an angle of attack of 40◦. (Courtesy of ESA)

Figure 4.5: Friction lines and heat fluxes for a generic re-entry vehicle for the
hypersonic flight regime with an angle of attack of 40◦. (Courtesy of ESA)

32

CHAPTER 4. FORCES ACTING ON A SPACECRAFT

with ~TT being aligned with the velocity vector and ~TN being perpendicular to it. This equation
can be rewritten as

~TT = T cos(ϑL − γ)~eV , ~TN = T sin(ϑL − γ)~eL (4.7)

by using the local pitch angle ϑL and the flight path angle γ instead of the angle of attack
α (see Figure 4.1). The formulation in (4.7) is of particular relevance for the computation
of launch trajectories, as during the ascent the pitch angle is imposed. The flight path angle
then results from this preprogrammed pitch law summarizing the guidance principles for the
fulfillment of the required injection parameters.

4.3 The resulting tangential and normal forces ~FT and ~FN

Taking into account the results of the previous sections the force equations (3.33)-(3.35) can
be revisited. Since the tangential force ~FT and the normal force ~FN are defined with respect
to the velocity vector, it can be written

~FT = T cos(α)~eV − ~D , ~FN = T sin(α)~eL + ~L . (4.8)

Or, more precisely
~FT =

(
T cos(α)− 1

2
ρSCDV 2

)
~eV (4.9)

and
~FN =

(
T sin(α) +

1
2
ρSCLV 2

)
~eL . (4.10)

In accordance with (4.7) these equations can be written for the computation of a launch
trajectory as

~FT =
(
T cos(ϑL − γ)− 1

2
ρSCDV 2

)
~eV (4.11)

and
~FN =

(
T sin(ϑL − γ) +

1
2
ρSCLV 2

)
~eL . (4.12)

From these equations it is apparent, that no other forces than gravity act on the spacecraft
as soon as the thrust is nullified and the influence of an atmosphere is neglected (ρ = 0).
Consequently, in that case an unperturbed Keplerian orbit should be obtained provided that
proper initial conditions are given.

Before showing examples of such Keplerian trajectories confirming the validity of this as-
sumption (chapter 7), the following pages discuss the gravitational field of the Earth and also
the properties of the planet’s atmosphere. Accurate physical models of both are required as
they directly influence the spacecraft trajectory as seen in this chapter.

33

Chapter 5

Atmosphere and Gravitational
Field of the Earth

The gravitational potential of celestial bodies is of major relevance for a spacecraft whose
trajectory is in their vicinity. However, if the celestial body possesses an atmosphere and if
the operations of the spacecraft involve significant portions in that region, atmospheric effects
can not be neglected either. Consequently, a brief introduction to models of the Earth’s
atmosphere and a description of the geoid’s gravitational field is provided in this chapter.

5.1 Models of the Earth atmosphere

Different analytical and empirical atmosphere models are commonly used for the computation
of spacecraft trajectories and orbits. They provide the required information about air density
and air temperature. As seen in (4.3) the air density contributes directly to the aerodynamic
force ~A, and hence also to its components ~L and ~D. The air temperature is needed to
compute the speed of sound leading to the actual Mach number of the spacecraft. Since
the aerodynamic coefficients depend on the Mach number (see 4.1.2) accessing its value is
mandatory.

The speed of sound can be calculated via

vs =

√
κ cΘ
mmol

(5.1)

with κ = cP /cV being the ratio of the specific heat coefficients, c representing the specific gas
constant, Θ being the absolute temperature and mmol = 28.96 g representing the mass of one
mole of air. The Mach number follows via

M =
V

vs
, (5.2)

where V is the velocity of the spacecraft relative to the atmosphere. Thus, V corresponds
directly to the velocity used in the set of differential equations (3.21)-(3.23) and (3.33)-(3.35).

Within this section the focus is now on three different atmosphere models, being used for
the computation of the examples shown in chapter 7.

34

CHAPTER 5. ATMOSPHERE AND GRAVITATIONAL FIELD OF THE EARTH

5.1.1 No atmosphere

For the calculation of perfect and unperturbed Keplerian orbits the atmospheric influence is
neglected. Therefore, the atmospheric density is set to ρ = 0 for all altitudes.

5.1.2 An analytical model

The following expressions for the atmospheric density provide an appropriate analytical ap-
proximation. Here, r is the altitude above the Earth surface in kilometer and the air density
ρ is given in kg/m3:

r > 155: ρ = 3.5 · 10−12 · exp(−(r − 380)/48) (see also [10])
r ≤ 155: ρ = ρ0 · exp(−900 · r/Rea) (see also [12])

In the last equation ρ0 = 1.225 kg/m3 stands for the air density at ground level and Rea is
the mean Earth radius. Figure 5.1 shows the resulting plot for altitudes up to 400 km.

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 50 100 150 200 250 300 350 400 450

A
tm

os
ph

er
ic

 d
en

si
ty

 [k
g/

m
^3

]

Altitude [km]

Used for r<=155 km
Used for r>155 km

Measured mean values

Figure 5.1: Analytical model for the atmospheric density. The measured mean
values are taken from [7].

Concerning the temperature profile of the Earth atmosphere it is more difficult to find an
analytical expression. However, the following piecewise linear approximations can be used for
an estimation of the absolute air temperature as a function of the altitude r.

0 < r ≤ 11 : Θ = −6.3636 · r + 287
11 < r ≤ 15 : Θ = −0.25 · r + 219.75
15 < r ≤ 25 : Θ = 0.1 · r + 214.5
25 < r ≤ 48 : Θ = 2.8261 · r + 146.35
48 < r ≤ 50 : Θ = 0.5 · r + 258
50 < r ≤ 53 : Θ = −1/3 · r + 299.67
53 < r ≤ 80 : Θ = −4.2963 · r + 509.7
80 < r ≤ 85 : Θ = −1.2 · r + 262
85 < r ≤ 97 : Θ = 0.5 ·+117.5
97 < r ≤ 170 : Θ = 8.6849 · r − 676.44
170 < r ≤ 220 : Θ = 2.8 · r + 324
220 < r ≤ 500 : Θ = 0.2143 · r + 892.86

35

CHAPTER 5. ATMOSPHERE AND GRAVITATIONAL FIELD OF THE EARTH

Again, the altitude above the Earth surface is measured in kilometer and the temperature Θ
is given in Kelvin.

In section 5.2 a comparison between the analytical expressions provided above and the
results of an empirical atmosphere model described in the following section will demonstrate
that the analytical descriptions serve as a good approximation.

5.1.3 The empirical NRLMSISE-00 model

This empirical atmosphere model from the Naval Research Laboratory in Washington DC
developed by J.M. Picone et al. is based on the earlier MSISE90 model and is one of the
most advanced models for the Earth atmosphere (see [6]). Since in this model the density
and the temperature of the atmosphere depend on the time, on the position and also on
solar radiation fluxes, the model can be profitably used for high accuracy long term orbit
predictions. However, the model is by far more powerful than it is required as only the
values of the total mass density and the absolute temperature are of direct interest. Possible
features like Oxygen number density, Hydrogen number density or exospheric temperature
(but to name a few) are of no immediate relevance for the computation of the trajectory. In
order to compute the desired values of ρ and Θ some input information is required. The input
of the original NRLMSISE-00 model consists of the nine variables shown in Table 5.1.

Variable Meaning [Unit]
DOY Day of the Year
UT Universal Time [sec]
ALT Altitude [km]
GLAT Latitude [deg]
GLONG Longitude [deg]
STL Local apparent solar time [sec]
AF107 The 81-day average of the 10.7 cm solar flux centered on DOY
F107 The 10.7 cm solar flux of the previous day
AP The daily magnetic index

Table 5.1: Original input variables for the NRLMSISE-00 atmosphere model. In
the developed software program the actual year was added as an input variable in
order to assure correct access to two solar data bases describing fluctuations in
the solar activity.

The position variables, i.e. the latitude, the longitude and the altitude, are inherent in the
system of differential equations. The date and the actual time have to be specified additionally.
The local apparent solar time can easily be calculated by using

STL = UT/3600 + GLONG/15 . (5.3)

The last three input variables in Table 5.1 describe the solar activity and resulting fluctu-
ations of the geomagnetic field. Although the 10.7 cm solar flux does not contribute directly
to a deformation of the Earth’s upper atmosphere or ionosphere (it is not energetic enough),
it is an important indicator of the solar activity as it tends to follow the changes in the solar
ultraviolet. That region of the solar spectrum influences the composition and the density of
the Earth atmosphere immensely. The magnetic index Ap describes the daily fluctuations

36

CHAPTER 5. ATMOSPHERE AND GRAVITATIONAL FIELD OF THE EARTH

of the geomagnetic field ranging from 0 nT (quiet) to 400 nT (greatly disturbed). These
perturbations, also caused by solar radiation, can be used as an indicator for solar activity
as well. NRLMSISE-00 uses these parameters as input in order to determine deformations of
the atmosphere from which it derives the related air density.

0

5

10

15

20

25

30

35

40

45

50

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040

M
ag

ne
tic

 In
de

x
A

p
[n

T
]

Year

11-year solar cycle and the Magnetic Index Ap

measurements
furture estimations

Figure 5.2: Values of the magnetic index Ap as measured in the past (since 1947)
and extrapolated estimations for the future.

40

60

80

100

120

140

160

180

200

220

240

260

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040

10
.7

cm
 s

ol
ar

 F
lu

x
[1

0^
22

 W
s/

m
^2

]

Year

11-year solar cycle and the 10.7 cm solar flux

Measurements
Future Estimations

Figure 5.3: Values of the 10.7 cm solar flux as measured in the past (since 1947)
and extrapolated estimations for the future.

The software tool used for the computation of the trajectories in chapter 7 includes two
databases that have been added to the original NRLMSISE-00 model in order to obtain an
enhanced and more realistic model of the atmosphere. The databases contain daily values for
the 10.7 cm solar flux and for the magnetic index Ap from 1960 until March 2002. They are
freely available on the Internet1 and can be updated easily if required. By adding these two

1ftp://ftp.ngdc.noaa.gov/STP/SOLAR DATA/SOLAR RADIO/FLUX/
ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC DATA/INDICES/KP AP/

37

CHAPTER 5. ATMOSPHERE AND GRAVITATIONAL FIELD OF THE EARTH

databases, all input variables of the model, shown in Table 5.1, can be quantified, as the values
for Ap and for the 10.7 cm flux can be read from the databases directly and the 81-day average
of the solar flux can be calculated easily. However, the databases cover only the time period
until March 2002. As a result, trajectories generated for any time later than March 2002 can
not be treated so far. This problem can be solved by using the monthly average of the solar
flux and the magnetic index from 1960 until 2002. By averaging over corresponding months it
is possible to reproduce the 11-year solar cycle that can be extrapolated into the future. Thus,
by relying on earlier measured values contained in the databases, an enhanced NRLMSISE-00
atmosphere model can predict the values of the 10.7 cm flux and the magnetic index for any
time in the future. However, it should be emphasized that these are only estimations as it
is impossible to predict the solar activity accurately. Figures 5.2 and 5.3 show the variations
of the solar flux, those of the magnetic index and also the resulting estimated values for the
next decades. Since the enhanced atmosphere model should be able to compute the total
atmospheric density and the temperature for any given time, the actual year has to be added
as an input variable to the original NRLMSISE-00 model (see Table 5.1). This has been done
in the developed software tool so that the model can now compute the values of ρ and Θ
depending on the 10.7 cm flux and the magnetic index Ap for any given time.

Some additional background information as well as a link to a FORTRAN source code of the
original NRLMSISE-00 model can be found on the Internet2. The source code in C based on
the FORTRAN version can also be downloaded from the Internet3. However, one should note
that the C version of the code was not officially published by the Naval Research Laboratory.

5.2 Comparison of the atmosphere models

Figure 5.4 and Figure 5.5 show clearly the influence of the solar activity on the atmospheric
properties, when they are computed with the NRLMSISE-00 atmosphere model. For the

-14

-12

-10

-8

-6

-4

-2

0

2

0 50 100 150 200 250 300 350 400 450 500

D
en

si
ty

 [l
og

10
(k

g/
m

^3
)]

Altitude [km]

Comparison of Atmospheric Models

NRLMSISE-00: 01/01/1998
NRLMSISE-00: 01/07/1992

Analytical Model

Figure 5.4: Density profile of the Earth atmosphere for altitudes from ground level
to 500 km as calculated by the analytical model and by NRLMSISE-00. For the
latter one the results for two different years are shown.

2http://nssdc.gsfc.nasa.gov/space/model/atmos/nrlmsise00.html
3http://www.brodo.de/english/pub/nrlmsise/

38

CHAPTER 5. ATMOSPHERE AND GRAVITATIONAL FIELD OF THE EARTH

100

200

300

400

500

600

700

800

900

1000

1100

0 100 200 300 400 500 600

T
em

pe
ra

tu
re

 [K
]

Altitude [km]

Comparison of Atmospheric Models

NRLMSISE-00: 01/01/1998
NRLMSISE-00: 01/07/1992

Analytical Model

Figure 5.5: Temperature profile of the Earth atmosphere for altitudes from ground
level to 500 km as calculated by the analytical model and by NRLMSISE-00. For
the latter one the results for two different years are shown.

comparison a year with high solar activity (1992) and a year of low activity (1998) as well as
different months were chosen. The values of the analytical atmosphere models are shown in
parallel.

For low altitudes no big differences are found neither in the temperature nor in the density
profile of all three computations. For high altitudes, however, the influence of the solar
activity is clearly visible. Especially the density increases by a factor of 10 in times of high
solar activity when computed with NRLMSISE-00. In consequence, this increase influences
directly the components of the aerodynamic force as can be seen in (4.3).

In addition it becomes obvious that the analytical models for the density and the tempera-
ture tend to follow the results of the empirical model for times of high solar activity. In that
respect the analytical models describe a rather dense and hot atmosphere. This should be
kept in mind if they are used for trajectory computations.

5.3 The gravitational field of the Earth

Since the Earth is not a perfect sphere and since its mass is distributed inhomogeneously, the
gravitational potential is not spherically symmetric either. This effect is often referred to as
oblateness of the Earth. By using a spherical harmonic expansion a convenient description of
the gravitational field at a distance r is (see also [7]):

U(r, l, L) =
µea

r

{
− 1 +

∞∑

n=2

[(
Rea

r

)n

JnPn0

(
cos(L)

)
(5.4)

+
n∑

m=1

(
Rea

r

)n(
Cnm cos(ml) + Snm sin(ml)

)
Pnm

(
cos(L)

)]}

The gravitational parameter µea of the Earth can be written as

µea = mea · γG (5.5)

39

CHAPTER 5. ATMOSPHERE AND GRAVITATIONAL FIELD OF THE EARTH

with mea being the mass of the Earth and γG representing the gravitational constant. L and
l are geographic latitude and longitude and Pnm Legendre polynomials. Jn, Snm and Cnm are
the so-called zonal, tesseral and sectoral coefficients of the Earth and are based on its mass
distribution. In Table 5.2 the magnitude of low order J , S and C are given. In many cases the

Zonal Tesseral Sectoral
J2 = 1082.6 · 10−6 C21 = 0 S21 = 0
J3 = −2.53 · 10−6 C22 = 1.57 · 10−6 S22 = −0.904 · 10−6

J4 = −1.62 · 10−6 C31 = 2.19 · 10−6 S31 = 0.27 · 10−6

J5 = −0.23 · 10−6 C32 = 0.31 · 10−6 S32 = −0.21 · 10−6

J6 = 0.54 · 10−6 C33 = 0.1 · 10−6 S33 = 0.197 · 10−6

Table 5.2: Zonal harmonic, tesseral harmonic and sectoral harmonic coefficients
of the Earth. (Taken from [7])

first or second order approximations are sufficient, as the J2-term dominates by far the other
terms (see Figure 4.2). Especially for launch and re-entry computations high order correction
terms can be neglected. For high accuracy long term orbit predictions, however, it might be
necessary to consider also higher order terms. In [14] a list containing the coefficients up to
the 20th order can be found.

With the discussed models of the atmosphere and the gravitational field of the Earth all
required information for the computation of spacecraft trajectories has been presented. How
this information can be combined and implemented in a software tool is shown in the following
chapter.

40

Chapter 6

The Implementation

This chapter deals with the architecture of the computer program that is used for the com-
putation of the spacecraft trajectories presented in chapter 7. It describes in detail the input
and output files as well as the Runge-Kutta algorithm, a numerical integrator scheme being
the core part of the program. The complete source code of the program in C can be found in
the appendices.

6.1 The general program architecture

A program to compute trajectories can be implemented in many different ways. This section,
however, describes one possible program architecture based on the unified approach combining
comfortable handling of input and output data with an easily understandable logical structure.
A flowchart showing the program structure in detail is presented in Figure 6.2 later in this
chapter. Since in this flowchart also the different input and output files are depicted a brief
description of each file is given in the following.

6.1.1 The input files

In order to make the program more flexible, the input consists of different files. This includes
files for

• the specification of the trajectory phase (e.g. orbit, launch or re-entry),

• the characterization of the spacecraft (e.g. mass, surface, aerodynamic coefficients),

• the specification of the physical model (e.g. atmosphere and gravitation model),

• the definition of the stop condition for the numerical loop (e.g. maximum propagation
time).

The name, the content and the purpose of each input file is described hereafter. In the
appendices an example for each file is given.

1) launch input.txt, orbit input.txt, manual input.txt

These input files define which kind of trajectory is to be computed. One of these files has to
be selected at the beginning of the program.

41

CHAPTER 6. THE IMPLEMENTATION

a: launch input.txt: This file contains all the information required for the computation
of a launch trajectory. In Table 6.1 the different input variables and parameters are shown.
They include the characteristics of the rocket (e.g. thrust, burn duration of the stages) as
well as the initial values for the latitude, the longitude and for the azimuth of the relative
velocity. This launch azimuth is important as it is directly connected to the inclination of the
desired orbit. Since the radius vector ~r is measured from the center of the Earth, the initial
altitude r0 is ground level, i.e. the Earth radius. In order to avoid a division by zero in (3.34)
and (3.35), the initial relative velocity V0 has to be set to a very small non-zero value. Both is
done by the program automatically. Thus, the initial altitude and the initial relative velocity
are already specified without being input parameters. The initial flight path angle γ0 = 90◦

is also set automatically. The evolution of the flight path angle γ during the launch results
from the imposed pitch law (see chapter 4.2 and 6.1.1.5).

Variable/Parameter Meaning [Unit]
General Information
L0 Initial/Launch pad latitude [deg]
l0 Initial/Launch pad longitude [deg]
χ0 Initial/Launch azimuth of the relative velocity [deg]
tlo Lift-off time [s] (after ignition)
nstages Number of stages
mpayload Payload mass [kg]
Naddmass Additional Mass Flag:

Indicates how many additional mass
items are following (see below)

For each stage:
nengines Number of engines
Te Average thrust per engines [N]
β Angle between thrust and rocket main axis [deg]
Is Average specific impulse [m/s]
tstart Burn start time [s] (after ignition)
tstop Burn stop time [s] (after ignition)
mprop Propellant mass of stage [kg]
tsep Separation time [s] (after ignition)
msep Separation mass [kg]

For each additional mass item:
madd Additional mass [kg]
tastart Beginning of mass separation [s] (after ignition)
tastop End of mass separation [s] (after ignition)

Table 6.1: Input variables and parameters of launch input.txt

Concerning the input for the rocket boosters one should note that the thrust Te and the
specific impulse Is of an engine usually depend on the atmospheric pressure and therefore on
the altitude. However, in this input file average values of these parameters should be provided

42

CHAPTER 6. THE IMPLEMENTATION

as a correct modelling of the engines’ performance is a rather cumbersome task.
Another important aspect of a launch trajectory is the evolution of the mass during the

flight. The mass of the rocket consists of the payload mass, the actual propellant mass, the
mass of the structure and possible additional mass items like water for the cooling of the
nozzles. For the propellant mass it is assumed that the mass flow rate is constant. Then it
can be calculated by

dm

dt
=

T

Is
. (6.1)

The following examples illustrate the purpose of the additional mass items: The jettisoning
of a fairing can be simulated by putting tastart equal to tastop while madd is representing the
mass of the fairing. The loss of cooling water can be simulated by defining the specific cooling
period via tastart and tastop and by putting madd equal to the mass of the water lost during that
period. For the computation of the actual mass the mass flow rate is assumed to be constant.

b: orbit input.txt: This input file is selected if a classical satellite orbit or a combined
orbit-and-re-entry trajectory is to be computed. The input variables and parameters are
summarized in Table 6.2. The computation is started either at minimum or maximum lat-

Variable/Parameter Meaning [Unit]
rapo Apogee above Earth surface [km]
rperi Perigee above Earth surface [km]
l0 Initial longitude [deg]
i Inclination of the orbit [deg]
Nlati Latitude Flag: Computation can be started at

1) Perigee and minimum latitude
2) Perigee and maximum latitude
3) Apogee and minimum latitude
4) Apogee and maximum latitude

Ndirec Direction Flag: Computation can be started
1) Going eastwards
2) Going westwards

Ndeorbit De-orbit Flag:
Indicates whether a de-orbit maneuver
shall be initiated or not (see 5.1.1.2)

Table 6.2: Input variables and parameters of orbit input.txt

itude in the perigee or apogee. Hence, the initial flight path angle is always γ0 = 0◦. The
initial relative velocity V0 is well defined by the input parameters as it can be derived from
the absolute velocities at apogee or perigee for which one finds

V apo
abs =

√
µea

rapo

√
2rperi

rperi + rapo
, (6.2)

V peri
abs =

√
µea

rperi

√
2rapo

rperi + rapo
(6.3)

43

CHAPTER 6. THE IMPLEMENTATION

with the gravitational parameter

µea = γG ·mea ≈ 3.98941 · 1014 m3

s2
. (6.4)

Here, γG is the gravitational constant and mea represents the mass of the Earth. The norm
of the initial relative velocity can then be computed via

V0 = Vabs ± Ω · r0 · L0 (6.5)

with Ω ≈ 7.2921159 · 10−5 rad/s being the angular velocity of the Earth and r0 and L0

representing the initial altitude and the initial latitude. The rotation of the Earth has to
be either added or subtracted from the absolute velocity depending on the direction of the
spacecraft. If the trajectory leads eastwards the rotation has to be subtracted, for a westward
flight it has to be added. The flight direction, defined by the Direction Flag Ndirec, drives
also the initial value of the azimuth of the relative velocity. For a flight in eastward direction
the azimuth is χ0 = 90◦, while for a westward flight it is χ0 = 270◦. The inclination i defines
the absolute value of the initial latitude L0, while the Latitude Flag Nlati defines its sign and
also the initial value of the altitude r0 (see Table 6.2). Finally, the De-orbit Flag Ndeorbit

indicates whether a de-orbit maneuver shall be carried out in order to leave the orbit and to
re-enter the atmosphere at a foreseen location. For the execution of the de-orbit maneuver,
however, additional information is needed. This information is stored in a different input file
called Deorbit.txt. It is described in detail in 6.1.1.2 later in this chapter.

c: manual input.txt: This input file offers the possibility to define all initial values manu-
ally. The input variables and parameters are shown in Table 6.3. Like in the previous input

Variable/Parameter Meaning [Unit]
r0 Initial altitude [km]
V0 Initial relative velocity [m/s]
γ0 Initial flight path angle [deg]
χ0 Initial azimuth of the relative velocity [deg]
L0 Initial latitude [deg]
l0 Initial longitude [deg]
Ndeorbit De-orbit Flag:

Indicates whether a de-orbit
maneuver is planned or not

Table 6.3: Input variables and parameters of manual input.txt

file, the De-orbit Flag Ndeorbit specifies whether a de-orbit maneuver is supposed to be initi-
ated or not. The required information for the computation of this maneuver is stored in the
input file following hereafter.

2) Deorbit.txt

This input file is needed for the computation of a simple de-orbit maneuver leading the
spacecraft from its initial orbit to a defined landing site. In order to be able to touch down

44

CHAPTER 6. THE IMPLEMENTATION

at the right location on the ground, the spacecraft aims already for a so-called entry interface
being a specific point within the outer regions of the atmosphere. Passing through this entry
interface assures that the final landing site on the ground can be reached. Thus, if one finds
a way to get from the initial orbit to the right entry interface, the correct landing spot can
hardly be missed. An easy solution for this problem is described in the following.

Parameter Meaning [Unit]
ldeo Entry interface longitude [deg]
Ldeo Entry interface latitude [deg]
rdeo Entry interface altitude [km]
γdeo Entry interface flight path angle [deg]

Table 6.4: Input parameters of Deorbit.txt

The entry interface is defined by the parameters contained in this input file and shown in
Table 6.4. In addition to the three spatial coordinates (altitude, latitude and longitude), the
desired flight path angle at that point has also to be specified. For simplification it is assumed
that the entry interface (and also the final landing spot) lies in the plane of the initial orbit.
The concrete values for the parameters of the entry interface depend on the foreseen landing
site and also on spacecraft properties. They can either be determined via an iterating process
(e.g. the atmospheric arc from the entry interface to the ground is computed until the exact
coordinates are found), or they are already known and can be specified directly.

In order reach the so-defined entry interface, the spacecraft has to leave its initial orbit
by initiating a so-called de-orbit burn. This de-orbit burn consists of a specific decrease of
the relative velocity (a negative ∆V). If the time period for firing the thrusters, required to
decelerate the vehicle, is short compared to the time needed to complete one further orbit,
the computation of the ∆V is based on the impulsive maneuver hypothesis and the reduction
of the velocity can be assumed to take place instantaneously.

Based the values for rdeo and γdeo (see Table 6.4) and knowing the current values of r, V
and γ it is possible to compute a ∆V that leads the spacecraft from its initial position to the
desired values of rdeo and γdeo by using the following second degree equation

[
r2
0

r2
deo cos(γdeo)

(
sin2(ω + γ0)− 1

)
+ 1

]
(∆V)2

+2V0

[
cosω − r2

0

r2
deo cos(γdeo)

cos γ0 cos(ω + γdeo)

]
∆V (6.6)

+2µea

[
1

rdeo
− 1

r0

]
+ V 2

0

[
1− r2

0

r2
deo cos2(γdeo)

cos2 γ0

]
= 0

Here, the variables with the index 0 represent the initial values, i.e. before the maneuver,
and ω is the angle between the vector of the initial velocity and ∆V . Since it was assumed
that the maneuver takes place within the initial orbital plane, one finds ω = 180. As one can
see in equation (6.6), the ∆V does not depend on the latitude or the longitude, neither of
the initial orbit nor of the entry interface. However, in order to make sure that the de-orbit
burn V0 −∆V = V ′ leads to a successful and correct re-entry, a test computation is carried

45

CHAPTER 6. THE IMPLEMENTATION

out: If after the maneuver the correct values for ldeo and Ldeo are reached, the de-orbit burn
can also be initiated in the main program. If the values are not reached, the de-orbit burn
is postponed and the spacecraft continues to fly its initial orbit. Figure 6.1 illustrates the
purpose of the test computation.

Figure 6.1: Illustration of the connection between initial orbit, de-orbit maneuver
and entry interface. It is assumed that the entry interface lies in the same plane
as the initial orbit. Since the computed ∆V does only depend on γ0, γdeo, r0, rdeo

and V0 a test function has to check whether the correct entry interface is reached
after the de-orbit burn was carried out. At t=1 the spacecraft’s orbital velocity
is ~V0 and after the de-orbit maneuver the vehicle re-enters the atmosphere at
the point indicated by the cross. Although the correct FPA γdeo is found at the
corresponding altitude of the entry interface, the de-orbit burn can not be initiated
at t=1, as the current position does not match the latitude and/or longitude of
the entry interface. In consequence the spacecraft continues to fly its initial orbit.
At t=2, however, the entry interface can be reached with a de-orbit burn, and
thus the test function can send the command to carry out the de-orbit maneuver.

A final remark is to be made on the variables in equation (6.6): All variables of flight
represent here absolute and not relative values. Thus, they do not correspond directly to
those of the reference frame usually used within the computations. However, this approach
provides a good first order approximation for the computation of a ∆V . A more detailed
analysis of de-orbit maneuvers as well as the derivation of equation (6.6) is provided in [8].

3) spacecraft input.txt

While the previous input files contain information concerning the trajectory, this input file
is used for the characterization of the spacecraft. A list of its parameters can be found in
Table 6.5. For the computation of a launch trajectory the mass of the spacecraft is com-
puted automatically during the execution of the program as it does not remain constant and
changes quickly. Thus, while using launch input.txt any value for the mass specified here in
spacecraft input.txt will not be considered. For the aerodynamic coefficients CL and CD two
options are possible. Either they are specified in this file and they remain constant during

46

CHAPTER 6. THE IMPLEMENTATION

Parameter Meaning [Unit]
m Mass [kg]
S Reference surface [m2]
NCL

Lift Coefficient Flag:
1) CL is constant and specified hereafter
2) CL is varying and defined in an extra file

CL Lift coefficient (if specified via flag)
NCD

Drag Coefficient Flag:
1) CD is constant and specified hereafter
2) CD is varying and defined in an extra file

CD Drag coefficient (if specified via flag)
µ Bank angle [deg]
α Angle of attack [deg]

Table 6.5: Input parameters of spacecraft input.txt

the whole computation or they are read from additional files (see next section) as functions of
the Mach number and the angle of attack (see 4.1.1.4). In the present version of the code the
values for the reference surface S, for the bank angle µ and for the angle of attack α remain
constant during the execution of the program.

4) CD input.txt , CL input.txt

These files contain the variables and parameters specified in Table 6.6 and provide the pos-
sibility to compute varying aerodynamic coefficients depending on the Mach number M and
the angle of attack α. In addition to different values for the Mach number and for the AoA

Varible/Parameter Meaning [Unit]
Nmach Number of Mach numbers
NAoA Number of angles of attack
M1 . . . MN Different Mach numbers
α1 . . . αN Different angles of attack [deg]
CD or CL Value for CD or CL for each specified

combination of Mach number and AoA

Table 6.6: Input variables and parameters of CD input.txt and CL input.txt

these files contain values for the aerodynamic coefficients for each specified combination of M
and α. During the execution of the program this information is used to interpolate linearly
between the specified values of CD and CL. Thus, dynamic and flight regime dependent values
of CD and CL are obtained.

5) pitch input.txt

This file is only mandatory for the computation of a launch trajectory. The local pitch angle
ϑL was introduced in chapter 4. It is the angle between the local horizon and the spacecraft

47

CHAPTER 6. THE IMPLEMENTATION

x-axis. The pitch angle is used to lead the launcher on its way from the ground to the desired
injection parameters as the rocket follows a pitch law preprogrammed in its guidance system.
In pitch input.txt the required parameters for the specification of a pitch law are provided.
Table 6.7 shows the parameters contained in this file. The concrete values of those depend
strongly on the launch configuration.

Parameter Meaning [Unit]
Npitch Pitch Flag:

1) Local pitch law
2) Inertial pitch law

Neq Number of functions following
For each function:
ti Start time [sec]
tf Stop time [sec]
ϑi Pitch angle at start time [deg]
ϑf Pitch angle at stop time [deg]

Table 6.7: Input parameters of pitch input.txt

The Pitch Flag indicates whether the data refers to a local (spacecraft linked) coordinate
system (see Figure 4.1), or to a so-called Galilean or inertial (launch pad linked) coordinate
system, as the pitch angle can be either measured with respect to the local horizon of the
spacecraft or with respect to the local horizon of the launch pad. However, it is possible to
transform the pitch angle from one system to the other. In particular for an equatorial launch
this can be achieved by using

ϑL(t) = ϑI(t) +
X(t)
rea

+ Ω · t . (6.7)

Here, ϑL(t) is the local pitch angle linked to the spacecraft, ϑI(t) represents the pitch angle
measured from the launch pad, Rea is the radius of the Earth, Ω its angular velocity and X(t)
represents the spacecraft’s horizontal distance from the launch pad. The horizontal distance
can be expressed via

dX

dt
= rea

V cos γ

r
, (6.8)

where r, V and γ represent the radius vector, the relative velocity and the flight path angle
known from the set of differential equations.

The information shown in Table 6.7 is used to compute the pitch angle as a function of
time. For each time interval specified in the file a function is created where ϑL(t) (or ϑI(t))
is approximated by a straight. Thus, for each time step during the launch a value of ϑL (or
ϑI) can easily be computed.

6) physical model input.txt

Several physical parameters have to be quantified or defined in this input file. Furthermore
models for the atmosphere and the gravitational field can be selected. The different parame-
ters contained in this file are listed in Table 6.8. Besides the radius and the angular velocity

48

CHAPTER 6. THE IMPLEMENTATION

Parameter Meaning [Unit]
Rea Earth radius [m]
Ω Angular velocity of the Earth [rad/s]
µea Gravitational parameter of the Earth [m3/s2]
UT Universal time [s]
DOY Day of year
Y EAR Actual year
Natmos Atmosphere Model Flag:

1) No atmosphere
2) Analytical model
3) NRLMSISE-00 model

Ngravi Gravitational Field Flag:
1) Spherical gravitational field
2) J-2 Correction terms

dt Integration time step [s]
Nprint Print Flag:

Defines how frequently the results are
written in the output files

Table 6.8: Input parameters of physical model input.txt

of the Earth, the gravitational parameter has to be specified as well. For the trajectories
presented in the next chapter the following values for these parameters are assumed:

Rea = 6378136.49m

Ω = 7.2921159 · 10−5 rad/s

µea = 3.98941 · 1014 m3/s2

The initial date and the time at which the trajectory computation is started has also to
be chosen. This information is especially needed if the NRLMSISE-00 atmosphere model
is selected via the atmosphere model flag, as here the atmospheric density and temperature
depend on the time and the date (see 5.1.3). The gravitational field flag indicates whether the
J-2 correction terms of the gravitational field shall be considered or not. If so, the gravitational
pull of the Earth does not only depend on the altitude but also on the latitude and longitude
(see 5.3). If the correction terms are neglected the gravitational acceleration of the Earth is

g(r) =
µea

r2
, (6.9)

with r being the radius vector measured from the center of the Earth and µea representing
the gravitational parameter. Taking the values from above leads to a mean acceleration on
the Earth surface of

g0 =
µea

R2
ea

≈ 9.8067m/s2 (6.10)

Finally, the length of the integration time step and the value of the Print Flag have to
be quantified. The actual value of the integration time step might depend on the type of

49

CHAPTER 6. THE IMPLEMENTATION

trajectory to be computed, as re-entry and launch trajectories require normally a smaller
time step than for instance the computation of circular orbits. However, the smaller the time
step, the more accurate the computation but the longer the computation time.

By using the Print Flag it can be specified how frequently the results of the numerical
integration are written in the output files. For example, this could be done after every
iteration step (Nprint = 1) or, preferably in case of long orbit propagations where the amount
of data needs to be reduced, after every twentieth iteration step (Nprint = 20).

7) stop condition input.txt

Table 6.9 shows the two parameters contained in this last input file. The first one is the
so-called Type Flag Nstop type specifying the type of the stop condition for the main loop of
the program. For example the flag could indicate that the integration loop is stopped when a
certain altitude is reached or, alternatively, when a certain time period has elapsed. Table 6.9
explains all options for this flag in detail.

The second parameter contains the limit of the loop itself. This could be, for example, an
altitude of 200 km above the Earth surface or a time period of 1000 seconds.

Specifying the final condition for the loop in an extra input file offers more flexibility as the
source code does not need to be modified.

Parameter Meaning [Unit]
Nstop type Type Flag:

It indicates whether the loop limit is the
1) Minimum altitude during descent
2) Maximum altitude during ascent
3) Amount of completed orbits
4) Time period of computation

Xlimit Value the of limit [km]/[s]/[INTEGER]

Table 6.9: Input parameters of stop condition input.txt

6.1.2 The output files

After having discussed the input files in detail, the attention is now on the output files and
the information they contain. In the actual program architecture three output files have been
implemented.

1) Results.txt

This output file contains the evolution of the six variables of motion describing the trajectory.
The variables provided in this file are shown in Table 6.10. One should note that the actual
altitude of the spacecraft is not a direct output variable but has to be calculated. This arises
due to the fact that the radius vector ~r is measured from the center of the Earth and not
from its surface. Consequently, the Earth radius has to be subtracted from the value of r
used during the computation in order to obtain the altitude above the Earth surface.

50

CHAPTER 6. THE IMPLEMENTATION

Variable Meaning [Unit]
Y EAR Actual year
DOY Day of year
UT Universal time [s]
t Elapsed trajectory time [s]
r(t) Altitude above Earth’s surface [km]
V (t) Relative velocity [m/s]
γ(t) Flight path angle [deg]
L(t) Longitude [deg]
l(t) Latitude [deg]
χ(t) Azimuth of relative velocity [deg]

Table 6.10: Output variables of Results.txt

2) Results2.txt

The second output file contains information concerning the aerothermodynamic properties of
the trajectory. Table 6.11 shows the related variables. The values for the air density, the
temperature, the Mach number and the aerodynamic coefficients refer to the actual position
of the spacecraft.

Variable Meaning [Unit]
Y EAR Actual year
DOY Day of year
UT Universal time [s]
t Elapsed trajectory time [s]
ρ(r, t) Actual air density [kg/m3]
Θ(r, t) Actual temperature [K]
M Mach number
CD(M,α) Drag coefficient
CL(M, α) Lift coefficient

Table 6.11: Output variables of Results2.txt

3) Results3.txt

The third and last output file contains information especially interesting for launch and re-
entry trajectories. Table 6.12 summarizes the variables presented in this file. Besides the
normal and tangential forces FN and FT , the evolution of the thrust and the mass are also
provided. In addition, the so-called g-loads in tangential and normal direction in units of the
Earth acceleration g0 are given. They are of special interest for the structural stability of the
spacecraft and can be computed via

gload,N (t) =
FN (t)
m(t)

· 1
g0

, gload,T (t) =
FT (t)
m(t)

· 1
g0

. (6.11)

51

CHAPTER 6. THE IMPLEMENTATION

Variable Meaning [Unit]
Y EAR Actual year
DOY Day of year
UT Universal time [s]
t Elapsed trajectory time [s]
FN (t) Normal force [N]
FT (t) Tangential force [N]
gload,N (t) Normal g-loads [g0]
gload,T (t) Tangential g-loads [g0]
m(t) Mass [kg]
T (t) Thrust [N]

Table 6.12: Output variables of Results3.txt

6.1.3 Program structure

After having presented the input and output files in the previous pages the general data flow
and the data processing of the developed program is subject of this section. A graphical
representation is given in Figure 6.2 where the general program structure is shown in a
flowchart.

It was mentioned that three major input files define the type of trajectory to be computed
(6.1.1.1). Thus, by selecting the input file the initial values of the six variables of motion are
selected and defined as well. Before running the main loop (i.e. before starting the numerical
integration of the six variables) the information concerning the spacecraft characteristics (e.g.
mass, surface, etc.) has to be read from the relevant input files. As mentioned previously,
in case of a launch trajectory the mass (like the thrust) is provided by the main input file
and not by the spacecraft input file. It consists of the sum of payload mass, propellant mass,
structural mass (separation mass) and additional mass items. Once the initial configuration is
found the numerical loop starts its iterations. At each time step within this process different
functions provide the actual data of the atmospheric conditions, of the gravitational field
and, if required, the actual values of the aerodynamic coefficients. For a launch trajectory the
actual thrust, provided by the ignited engines, is computed as well. Again, the mass consists
of the actual sum of the four contributions mentioned above. By combining all information
the resulting forces acting on the spacecraft can be calculated and the subsequent values of
the six variables of motion can be predicted. Additionally, new values for the g-loads and the
Mach number can also be computed.

As pointed out in 6.1.1.2 it is possible to initiate a de-orbit maneuver in order to re-enter the
atmosphere and to reach a specified entry interface. In this case, the program checks within
the loop whether a de-orbit maneuver, when it was initiated instantaneously, would lead to
the entry conditions specified in the input file or not. If so, the velocity will be automatically
decreased by the computed ∆V (6.6) and the spacecraft will start its descent.

Depending on the Print Flag (Table 6.8) the computed values of all variables are written in
the different output files. These provide a wide range of information concerning the trajectory
and the spacecraft characteristics.

52

CHAPTER 6. THE IMPLEMENTATION

Figure 6.2: Flowchart showing the general structure of the software program as
explained in section 6.1.3. The upper part defines the initial conditions and the
spacecraft properties, the lower part (contained in the box) represents the loop of
the numerical integration.

53

CHAPTER 6. THE IMPLEMENTATION

6.2 The numerical scheme: The Runge-Kutta algorithm

Since the numerical integrator scheme plays a key role in the computer program it is discussed
here in greater detail. In [14] numerous examples for numerical integrators with different
advantages and characteristics can be found.

Due to its stability and accuracy the numerical scheme used in this work is an 8th-order
Runge-Kutta algorithm. From the very common 4th-order version of this approach, explained
in detail in the following, the 8th-order algorithm can be derived easily. The 4th-order approach
was also investigated but it proved to be insufficient in the sense of stability and accuracy.
Therefore the higher order algorithm was selected for the final implementation.

The problem to solve is a so-called initial value problem of ordinary differential equations.
Given the function

dy

dx
= f(x, y) (6.12)

and a readily available point (xn, yn) (solution of the equation above) a subsequent solution
can be found by using the linear approximation

(xn, yn) ⇒ xn+1 = xn + h, yn+1 = yn + hf(xn, yn). (6.13)

This scheme was already developed by Euler and carries therefore his name. The selected
width of the step h depends strongly on the problem. However, this method is not very
accurate and suitable for functions varying significantly as its error is of the order of O(h2).

The Runge-Kutta approach is quite similar but benefits from the fact that it does not use
the slope at the initial point but a corrected value. The order of this correction corresponds
to the order of the Runge-Kutta scheme and shows also in the order of the error. The 4th-
order Runge-Kutta version has an error of the order of O(h5) and is based on the following
algorithm:

k1 = hf(xn , yn) (6.14)

k2 = hf(xn +
h

2
, yn +

k1

2
) (6.15)

k3 = hf(xn +
h

2
, yn +

k2

h
) (6.16)

k4 = hf(xn + h , yn + k3) (6.17)

xn+1 = xn + h (6.18)

yn+1 = yn +
1
6
(k1 + 2k2 + 2k3 + k4) +O(h5) (6.19)

This algorithm is frequently used for numerical integrations as it is easy to implement and
offers, in most cases, satisfying stability. Furthermore, it can also be applied to systems of
differential equations. In this case every component of the system is advanced simultaneously
and explicitly. Having the following set of differential equations

ẏ(1) = f(t , y(1), y(2))

ẏ(2) = g(t , y(1), y(2))

and the initial values (tn , y
(1)
n , y

(2)
n), one can calculate the subsequent points by using

54

CHAPTER 6. THE IMPLEMENTATION

k
(1)
0 = hf(tn , y

(1)
n , y

(2)
n) k

(2)
0 = hg(tn , y

(1)
n , y

(2)
n)

k
(1)
1 = hf(tn +

1
2
h , y(1)

n +
1
2
k

(1)
0 , y(2)

n +
1
2
k

(2)
0) k

(2)
1 = hg(tn +

1
2
h , y(1)

n +
1
2
k

(1)
0 , y(2)

n +
1
2
k

(2)
0)

k
(1)
2 = hf(tn +

1
2
h , y(1)

n +
1
2
k

(1)
1 , y(2)

n +
1
2
k

(2)
1) k

(2)
2 = hg(tn +

1
2
h , y(1)

n +
1
2
k

(1)
1 , y(2)

n +
1
2
k

(2)
1)

k
(1)
3 = hf(tn + h , y

(1)
n + k

(1)
2 , y

(2)
n + k

(2)
2) k

(2)
1 = hg(tn + h , y

(1)
n + k

(1)
2 , y

(2)
n + k

(2)
2)

y
(1)
n+1 = y(1)

n +
1
6
k

(1)
0 +

1
3
k

(1)
1 +

1
3
k

(1)
2 +

1
6
k

(1)
3 (6.20)

y
(2)
n+1 = y(2)

n +
1
6
k

(2)
0 +

1
3
k

(2)
1 +

1
3
k

(2)
2 +

1
6
k

(2)
3 (6.21)

The only difference between the 4th-order Runge-Kutta algorithm and the 8th-order version
is the higher accuracy of the second scheme. It has an error of only O(h9). By using the
following general notation

kj = f(tn + cjh , yn + h
j−1∑

k=0

ajkkk) (6.22)

yn+1 = yn +
jmax∑

j=0

bj kj (6.23)

the 4th-order Runge-Kutta scheme is characterized by the coefficients shown in Table 6.13.
For the 8th-order algorithm Table 6.14 summarizes the corresponding coefficients.

j cj aj k, k = 0 1 2 bj

0 0
1
6

1
1
2

1
2

1
3

2
1
2

0
1
2

1
3

3 1 0 0 1
1
6

Table 6.13: Coefficients of the 4th-order Runge-Kutta algorithm.

55

CHAPTER 6. THE IMPLEMENTATION

j cj ajk, k = 0 1 2 3 4 5 6 bj

0 0
7

1408

1
1
6

1
6

0

2
4
15

4
75

16
75

1125
2816

3
2
3

5
6

−8
3

5
2

9
32

4
4
5

−8
5

144
25

−4
16
25

125
768

5 1
361
320

−18
5

407
128

−11
80

55
128

0

6 0 − 11
640

0
11
256

− 11
160

11
256

0
5
66

7 1
93
640

−18
5

803
256

− 11
160

99
256

0 1
5
66

Table 6.14: Coefficients of the 8th-order Runge-Kutta algorithm.

In chapter 8 the performance and the accuracy of the 8th-order Runge-Kutta algorithm is
discussed in detail and the results obtained with this scheme are compared to those of other
numerical integrators commonly used in astrophysical computations.

In the following pages chapter 7 shows numerous examples of trajectories all computed
with the program presented in this chapter. It is demonstrated that a unified approach to the
computation of spacecraft trajectories is possible, that it provides good results for all flight
phases and that it proves to be a solid basis for enhanced future applications.

56

Chapter 7

The Results: Trajectories

In this chapter different examples of spacecraft trajectories are presented. They illustrate the
feasibility of a general treatment of trajectories as they are all computed with the program
presented in the previous chapter. The examples cover all types of trajectories and flight
phases mentioned so far, i.e. satellite orbits as well as re-entry and launch trajectories. The
correctness of the methodology is demonstrated by validating and comparing the results to
those from other sources and the available literature. Before more complex trajectories are
discussed, simple examples are shown at the beginning. Initially these were used to check on
the general performance of the software tool.

7.1 Closed orbits

In this section four examples of closed orbits are presented. Two circular orbits (not inclined
and inclined) are shown at the beginning followed by a highly eccentric orbit (a so-called Mol-
niya orbit). Finally, the results from a re-computation of the orbit decays of the STARSHINE1
and STARSHINE2 satellites complete this section.

7.1.1 Circular orbit (1)

This first example represents a circular orbit lying in the equatorial plane with an altitude of
r = 1000 km. The gravitational field of the Earth is assumed to be spherically symmetric and
the atmosphere is neglected. Hence, this orbit is a completely unperturbed Keplerian orbit.

In Figures 7.1 - 7.6 the evolution of the six variables of motion is shown for a period of six
orbits. Due to the orbit parameters and the physical model configuration all variables are
supposed to remain constant, except for the longitude. This behavior is clearly confirmed by
the plots. The integration time step is chosen to be 10 seconds for this example. However,
even with a time step of about 100 seconds, corresponding to approximately 70 integration
steps per orbit, the plots look very much the same.

57

CHAPTER 7. THE RESULTS: TRAJECTORIES

990

995

1000

1005

1010

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

A
lti

tu
de

 [k
m

]

Time [sec]

1000 km equatorial circular orbit

Figure 7.1: Circular Orbit (1): Altitude vs. Time

0

50

100

150

200

250

300

350

400

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Lo
ng

itu
de

 [d
eg

]

Time [sec]

1000 km equatorial circular orbit

Figure 7.2: Circular Orbit (1): Longitude vs. Time

6740

6760

6780

6800

6820

6840

6860

6880

6900

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

R
el

at
iv

e
V

el
oc

ity
 [m

/s
]

Time [sec]

1000 km equatorial circular orbit

Figure 7.3: Circular Orbit (1): Relative Velocity vs. Time

58

CHAPTER 7. THE RESULTS: TRAJECTORIES

-1

-0.5

0

0.5

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

F
lig

ht
 P

at
h

A
ng

le
 [d

eg
]

Time [sec]

1000 km equatorial circular orbit

Figure 7.4: Circular Orbit (1): Flight Path Angle vs. Time

-1

-0.5

0

0.5

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

La
tit

ud
e

[d
eg

]

Time [sec]

1000 km equatorial circular orbit

Figure 7.5: Circular Orbit (1): Latitude vs. Time

89

89.2

89.4

89.6

89.8

90

90.2

90.4

90.6

90.8

91

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

A
zi

m
ut

h
of

 R
el

at
iv

e
V

el
oc

ity
 [d

eg
]

Time [sec]

1000 km equatorial circular orbit

Figure 7.6: Circular Orbit (1): Azimuth of the Relative Velocity vs. Time

59

CHAPTER 7. THE RESULTS: TRAJECTORIES

7.1.2 Circular orbit (2)

Figures 7.7 - 7.12 show a circular orbit with an altitude of r = 400 km and an inclination of
i = 51.6◦. This corresponds approximately to the orbit of the International Space Station
(ISS). Like in the previous example the gravitational field is assumed to be spherically sym-
metric and the atmosphere is neglected. Therefore no variation in the altitude, no orbit decay
is observed (Figure 7.7) and the FPA remains also constant (Figure 7.10). However, due to
the inclination of the orbit some of the other variables of motion show a different behavior
than in the previous example. The relative velocity varies over a restricted range and reaches
its maximum when the spacecraft passes the equator (Figure 7.9). The azimuth of the rel-
ative velocity and the latitude do not remain constant either. Figure 7.11 reveals that the
azimuth always reaches a value of χ = 90◦ when the latitude passes through its maximum
or minimum value. Referring to the definition of the azimuth in Figure 3.2 this behavior is
expected. Figure 7.12 shows the typical ground-track pattern of an inclined circular orbit.
The plots are based on computations with an integration time step of 10 seconds.

396

397

398

399

400

401

402

403

404

0 5000 10000 15000 20000 25000 30000 35000 40000

A
lti

tu
de

 [k
m

]

Time [sec]

400 km inclined circular orbit

Figure 7.7: Circular Orbit (2): Altitude vs. Time

0

50

100

150

200

250

300

350

400

0 5000 10000 15000 20000 25000 30000 35000 40000

Lo
ng

itu
de

 [d
eg

]

Time [sec]

400 km inclined circular orbit

Figure 7.8: Circular Orbit (2): Longitude vs. Time

60

CHAPTER 7. THE RESULTS: TRAJECTORIES

7364

7366

7368

7370

7372

7374

7376

0 5000 10000 15000 20000 25000 30000 35000 40000

R
el

at
iv

e
V

el
oc

ity
 [m

/s
]

Time [sec]

400 km inclined circular orbit

Figure 7.9: Circular Orbit (2): Relative Velocity vs. Time

-1

-0.5

0

0.5

1

0 5000 10000 15000 20000 25000 30000 35000 40000

F
lig

ht
 P

at
h

A
ng

le
 [d

eg
]

Time [sec]

400 km inclined circular orbit

Figure 7.10: Circular Orbit (2): Flight Path Angle vs. Time

-60

-40

-20

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000 25000 30000 35000 40000

A
ng

le
 [d

eg
]

Time [sec]

400 km inclined circular orbit

Latitude
Azimuth of Relative Velocity

Figure 7.11: Circular Orbit (2): Latitude and Azimuth of the Relative Velocity vs.
Time

61

CHAPTER 7. THE RESULTS: TRAJECTORIES

-60

-40

-20

0

20

40

60

0 50 100 150 200 250 300 350 400

La
tit

ud
e

[d
eg

]

Longitude [deg]

400 km inclined circular orbit

Figure 7.12: Circular Orbit (2): Latitude vs. Longitude

7.1.3 Molniya orbit

The so-called Molniya orbits are inclined orbits with a high eccentricity and are frequently
used for Russian telecommunication satellites. Figures 7.13 - 7.18 show the results of the
computation for a typical Molniya orbit configuration. The apoapsis is set to rapo = 39360 km
while the periapsis is only rperi = 1000 km. The inclination of the orbit is i = 63.4◦. No
atmosphere is considered and the gravitational field is assumed to be spherically symmetric.
The integration time step is 10 seconds. Due to the high eccentricity of the orbit the resulting
plots look different than those of the previous sections. The relative velocity varies immensely
and reaches a minimum value close to zero in the apoapsis (Figure 7.14). The FPA does not
remain constant but varies over wide range of values (Figure 7.16). Figure 7.17 confirms
that the azimuth is χ = 90◦ whenever the latitude passes through its minimum or maximum.
The computed ground-track depicted in Figure 7.18 is very similar to that of the reference
trajectory shown in Figure 7.19. The latter one was taken from [7] for comparison.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50000 100000 150000 200000 250000 300000

A
lti

tu
de

 [k
m

]

Time [sec]

Molniya Orbit

Figure 7.13: Molniya Orbit: Altitude vs. Time

62

CHAPTER 7. THE RESULTS: TRAJECTORIES

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50000 100000 150000 200000 250000 300000

R
el

at
iv

e
V

el
oc

ity
 [m

/s
]

Time [sec]

Molniya Orbit

Figure 7.14: Molniya Orbit: Relative Velocity vs. Time

-100

-50

0

50

100

150

200

250

300

350

400

0 50000 100000 150000 200000 250000 300000

A
ng

le
 [d

eg
]

Time [sec]

Molniya Orbit

Latitude
Longitude

Figure 7.15: Molniya Orbit: Latitude and Longitude vs. Time

-60

-40

-20

0

20

40

60

0 50000 100000 150000 200000 250000 300000

F
lig

ht
 P

at
h

A
ng

le
 [d

eg
]

Time [sec]

Molniya Orbit

Figure 7.16: Molniya Orbit: Flight Path Angle vs. Time

63

CHAPTER 7. THE RESULTS: TRAJECTORIES

-100

-50

0

50

100

150

200

0 50000 100000 150000 200000 250000 300000

A
ng

le
 [d

eg
]

Time [sec]

Molniya Orbit

Latitude
Azimuth of Relative Velocity

Figure 7.17: Molniya Orbit: Latitude and Azimuth of the Relative Velocity vs.
Time

-80

-60

-40

-20

0

20

40

60

80

0 50 100 150 200 250 300 350 400

La
tit

ud
e

[d
eg

]

Longitude [deg]

Molniya Orbit

Figure 7.18: Molniya Orbit: Latitude vs. Longitude

Figure 7.19: Reference ground-track for a typical Molniya orbit. The computed
results shown in Figure 7.18 match the track depicted here very well. (Taken
from [7] for comparison)

64

CHAPTER 7. THE RESULTS: TRAJECTORIES

7.1.4 STARSHINE1 and STARSHINE2 orbit decay

STARSHINE1 was a spherical satellite that was released from the payload bay of a Space
Shuttle Orbiter in mid 1999 (see Figure 7.20). Due to the effect of atmospheric drag the

Figure 7.20: The STARSHINE1 satellite is released from the payload bay of a
Space Shuttle Orbiter. (Taken from [26])

initially circular orbit decayed and STARSHINE1 burned in the atmosphere during the re-
entry. The orbit decay was carefully surveyed from Earth as by relating these observations
to computed trajectories precious information about the consistency of atmospheric and exo-
atmospheric environmental models should be obtained. Since the initial conditions and the
satellite configuration are known the orbit decay can be recomputed. The results can then be

Parameter Value
Mass 39 kg
Reference surface 0.181 m2

Drag coefficient CD 2.1
Lift coefficient CL 0.0
Initial altitude 387 km
Inclination 51.6◦

Initial relative velocity ∼ 7367.71 m/s
Initial latitude (chosen) −51.6◦

Initial longitude (chosen) 200◦

DOY 156
YEAR 1999

Table 7.1: Parameters of the STARSHINE1 satellite. The values for the initial
latitude and longitude are chosen arbitrarily as other values were not accessible.

compared to the published flight date analysis. The parameters shown in Table 7.1 are used
as input. In addition, the J2-correction terms of the gravitational field and a slightly modified

65

CHAPTER 7. THE RESULTS: TRAJECTORIES

NRLMSISE-00 atmosphere model are required for a realistic reproduction of the trajectory.1

Besides the trajectory of STARSHINE1 also the orbit decay of the STARSHINE2 satellite
can be recomputed. STARSHINE2 followed the same approach and served the same purpose
like its precursor. It had the same shape and spacecraft parameters (e.g. mass, reference
surface) but was launched 18 months later. The initial altitude was approximately 17 km
lower than that of STARSHINE1. The computation of the STARSHINE2 orbit decay is
based on the initial conditions shown in Table 7.2.

Parameter Value
Initial altitude 370 km
Initial relative velocity ∼ 7378.04 m/s
DOY 350
YEAR 2001

Table 7.2: Parameters of the STARSHINE2 satellite. The other parameters
concerning the initial orbit and the spacecraft configuration equal those of
STARSHINE1 shown in Table 7.1.

Figure 7.21 and Figure 7.23 show the results of the re-computations. The integration time
step was set to 10 seconds. The faster orbit decay of the second satellite can be explained
by a lower initial altitude and very high solar activity at the beginning of 2002 (Figure 5.3).
Figure 7.22 and Figure 7.24 represent the results of the flight data analysis. They were taken
from [9] and [13] for comparison. Since the computed results match very well the reference
plots it is shown that with the presented unified approach and the developed software tool
even long term predictions with high accuracy are possible.

120

160

200

240

280

320

360

400

0 25 50 75 100 125 150 175 200 225 250 275 300

A
lti

tu
de

 [k
m

]

Time [Days in Orbit]

STARSHINE1 orbit decay

Figure 7.21: STARSHINE1 orbit decay computation: Altitude vs. Time. The entry
interface at 120 km is reached after approximately 256 days.

1The STARSHINE1 orbit decay was partly used to check the quality of the NRLMSISE-00 atmosphere
model. The analysis of the measurements revealed that the computed total mass density is, on average, over-
predicted. Therefore the atmospheric density calculated by NRLMSISE-00 has been corrected by a factor of
0.85 for all computations.

66

CHAPTER 7. THE RESULTS: TRAJECTORIES

Figure 7.22: STARSHINE1 orbit decay as computed from flight data analysis [9].
The entry interface at 120 km is reached after approximately 259 days.

120

160

200

240

280

320

360

400

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225

A
lti

tu
de

 [k
m

]

Time [Days in Orbit]

STARSHINE2 orbit decay

Figure 7.23: STARSHINE2 orbit decay computation: Altitude vs. Time. The entry
interface at 120 km is reached after approximately 134 days.

Figure 7.24: STARSHINE2 orbit decay as computed from flight data analysis [13].
The entry interface at 120 km is reached after approximately 131 days.

67

CHAPTER 7. THE RESULTS: TRAJECTORIES

7.2 Re-entry trajectories

In this section three examples for re-entry trajectories are presented. At the beginning two
computations are shown that were used to validate the program. Their results are compared
to those of accessible literature. Thereafter, the computation of a ballistic re-entry of a Soyuz
capsule coming from the International Space Station (ISS) is discussed.

7.2.1 Generic re-entry trajectory (1)

The following plots correspond to the computation of a generic re-entry trajectory starting at
r0 = 120 km and going down to ground level. The initial relative velocity is V0 = 7850 m/s
and the initial flight path angle is γ0 = −5◦. As the flight is supposed to take place in the
equatorial plane the initial latitude is set to L0 = 0◦. For the initial longitude a value of
l0 = 0◦ is chosen arbitrarily. The atmosphere is represented by the analytical model and
the gravitational field is assumed to be spherically symmetric. The spacecraft has a mass
of m = 10000 kg and a reference surface of S = 100 m2. The aerodynamic coefficients are
constantly CD = 0.5 and CL = 0.1. The bank angle is kept at µ = 0◦ during the whole
descent. Since the variables of motion change more rapidly during the re-entry compared to
the orbiting phase, the integration time step is set to 1 second. The computed results can be
used to validate the program as this trajectory is also discussed in [8].

Figure 7.25 shows the altitude profile of the trajectory. Due to its aerodynamic properties
and the initial conditions the spacecraft loses constantly height, except for a small interval
between 130 and 180 seconds. In this interval the flight path angle is no longer negative as
it can be seen in Figure 7.29. Figure 7.26 shows the altitude as a function of the relative
velocity for which Figure 7.27 is the reference plot whose flight profile is matched very well.
Figure 7.28 depicts again the relative velocity, but now as a function of time. Besides a small
increase in the velocity at the beginning, the spacecraft is decelerated rapidly due to the
influence of the atmosphere. Figure 7.30 confirms that the flight takes place in the equatorial
plane as the latitude remains 0◦ and the azimuth of the relative velocity is constantly 90◦.

0

10

20

30

40

50

60

70

80

90

100

110

120

0 50 100 150 200 250 300 350 400 450 500 550 600

A
lti

tu
de

 [k
m

]

Time [sec]

Re-entry Trajectory (1)

Figure 7.25: Generic re-entry Trajectory (1): Altitude vs. Time

68

CHAPTER 7. THE RESULTS: TRAJECTORIES

0

10

20

30

40

50

60

70

80

90

100

110

120

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

A
lti

tu
de

 [k
m

]

Relative Velocity [m/s]

Re-entry Trajectory (1)

Figure 7.26: Generic re-entry Trajectory (1): Altitude vs. Relative Velocity

Figure 7.27: This plot is taken from [8] for comparison and shows the altitude as a
function of the relative velocity. The computed results of Figure 7.26 correspond
to the curve with the index ”Numerical Simulation”.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300 350 400 450 500 550 600

R
el

at
iv

e
V

el
oc

ity
 [m

/s
]

Time [sec]

Re-entry Trajectory (1)

Figure 7.28: Generic re-entry Trajectory (1): Relative Velocity vs. Time

69

CHAPTER 7. THE RESULTS: TRAJECTORIES

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

0 50 100 150 200 250 300 350 400 450 500 550 600

F
lig

ht
 P

at
h

A
ng

le
 [d

eg
]

Time [sec]

Re-entry Trajectory (1)

Figure 7.29: Generic re-entry Trajectory (1): Flight Path Angle vs. Time

-10

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500 550 600

A
ng

le
 [d

eg
]

Time [sec]

Re-entry Trajectory (1)

Latitude
Longitude

Azimuth of Relative Velocity

Figure 7.30: Generic re-entry Trajectory (1): Latitude, Longitude and Azimuth of
the Relative Velocity vs. Time

7.2.2 Generic re-entry trajectory (2)

This example is similar to the previous one and is also taken from [8] for comparison and
validation purposes. However, some of the initial conditions are chosen differently. The
initial relative velocity for the following plots is V0 = 7500 m/s, the initial flight path angle
is γ0 = −1.3◦ and the lift coefficient is CL = 0.5 during the whole re-entry. Although the
other variables have the same values like in the previous example, the resulting trajectory
looks very different, as Figures 7.31, 7.32 and 7.34 - 7.36 clearly demonstrate. Special interest
shall be paid to the fact that in this configuration it takes much longer for the spacecraft to
reach the ground which results from numerous atmospheric rebounds the vehicle encounters
(Figure 7.31). Figure 7.32 shows the altitude as a function of the relative velocity and must
be compared to Figure 7.33 being the reference plot. As one can see, the computed results
are in very good agreement with those taken from [8].

70

CHAPTER 7. THE RESULTS: TRAJECTORIES

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

A
lti

tu
de

 [k
m

]

Time [sec]

Re-entry Trajectory (2)

Figure 7.31: Generic re-entry Trajectory (2): Altitude vs. Time

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

A
lti

tu
de

 [k
m

]

Relative Velocity [m/s]

Re-entry Trajectory (2)

Figure 7.32: Generic re-entry Trajectory (2): Altitude vs. Relative Velocity

Figure 7.33: This plot is taken from [8] for comparison and shows the altitude as a
function of the relative velocity. The computed results of Figure 7.32 correspond
to the curve with the index ”Numerical Simulation”.

71

CHAPTER 7. THE RESULTS: TRAJECTORIES

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

R
el

at
iv

e
V

el
oc

ity
 [m

/s
]

Time [sec]

Re-entry Trajectory (2)

Figure 7.34: Generic re-entry Trajectory (2): Relative Velocity vs. Time

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

F
lig

ht
 P

at
h

A
ng

le
 [d

eg
]

Time [sec]

Re-entry Trajectory (2)

Figure 7.35: Generic re-entry Trajectory (2): Flight Path Angle vs. Time

-30

0

30

60

90

120

150

180

210

240

270

300

330

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

A
ng

le
 [d

eg
]

Time [sec]

Re-entry Trajectory (2)

Latitude
Longitude

Azimuth of Relative Velocity

Figure 7.36: Generic re-entry Trajectory (2): Latitude, Longitude and Azimuth of
the Relative Velocity vs. Time

72

CHAPTER 7. THE RESULTS: TRAJECTORIES

7.2.3 Soyuz capsule: Ballistic re-entry coming from the ISS

After having shown two re-entry trajectories going from entry interface down to ground level,
the following example includes the orbiting phase and a de-orbit maneuver. Since the ballistic
re-entry of a Soyuz capsule coming from the ISS is simulated, this is a more realistic case
than the previous generic examples.

The initial orbit is circular, has an altitude of r = 390 km and an inclination of i = 51.6◦.
The analytical atmospheric model is chosen and the gravitational field of the Earth is assumed
to be spherically symmetric. In order to compute a de-orbit maneuver the entry interface has
to be specified (see 6.1.1.2). In the present case the entry interface is defined by

ldeo = 42.266◦, Ldeo = 40.431◦, rdeo = 102 km , γdeo = −1.48◦ .

This takes into account that the capsule is supposed to touch down in a foreseen area in
Kazakhstan. Concerning the characteristics of the capsule the following values are assumed:

S = 3.8m2, CD = 1.26 , CL = 0.0 , m = 2900 kg .

With this information the program computes a ∆V leading the spacecraft from its initially
circular orbit to the above specified entry interface. One should be reminded, that the above
specified flight path angle γdeo is an absolute flight path angle and not a flight path angle of
the relative velocity as usually. The orbit is started at t = 0 seconds at L = −51.6◦ latitude
and l = 279.16◦ longitude. The integration time step is set to 1 second.

Computed results Reference results [19]

De-orbit burn:
∆V = 114.154 m/s ∆V = 115.2 m/s

Entry Interface Conditions:
r = 102.1 km r = 101.783 km
l = 42.25◦ l = 42.266◦

L = 40.32◦ L = 40.426◦

V = 7610.3 m/s V = 7620 m/s
γ = −1.54◦ γ = −1.57◦

Parachute Deployment Conditions:
r = 10.7 km r = 10.7 km
l = 68.38◦ l = 69.0◦

L = 49.78◦ L = 50.08◦

V = 242.95 m/s V = 200.0 m/s

Table 7.3: Comparison of the results for a Soyuz re-entry computation: The com-
puted values are shown on the left while the reference values are shown on the
right. They are provided by ESA [19].

Figures 7.37 - 7.40 show the results of the computation. Table 7.3 provides a direct compar-
ison between the computed results and reference values taken from [19]. The appearing dif-
ferences might arise from different assumptions concerning the modelling of the aerodynamic

73

CHAPTER 7. THE RESULTS: TRAJECTORIES

properties of the spacecraft. Nevertheless this example demonstrates that computations com-
bining the orbiting and the re-entry phase and including a de-orbit maneuver can be treated
with the actual formulation and that a change of reference frames is not required even if the
trajectory includes atmospheric and exo-atmospheric parts.

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

A
lti

tu
de

 [k
m

]

Time [sec]

Soyuz ballistic re-entry from ISS

t = 2208 sec: r = 102.1 km
t = 434 sec: De-orbit burn

t = 2612 sec: r = 10.7 km
Parachute deployment at:

Figure 7.37: Soyuz re-entry coming from the ISS: Altitude vs. Time. The de-
orbit burn initiates the descent of the spacecraft. 1774 seconds after the de-orbit
maneuver the capsule passes the entry interface at 102.1 km. 404 seconds later
at 10.7 km altitude the parachute of the capsule is deployed.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000 2500 3000

R
el

at
iv

e
V

el
oc

ity
 [m

/s
]

Time [sec]

Soyuz ballistic re-entry from ISS

t = 2208 sec: V = 7610.33 m/s

De-orbit burn: delta_V = 114.154 m/s

Figure 7.38: Soyuz re-entry coming from the ISS: Relative Velocity vs. Time. At
t=434 seconds the decrease in the relative velocity is clearly visible (de-orbit
burn). At t=2208 seconds the entry interface at 102.1 km is reached.

74

CHAPTER 7. THE RESULTS: TRAJECTORIES

-80

-60

-40

-20

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000

A
ng

le
 [d

eg
]

Time [sec]

Soyuz ballistic re-entry from ISS

t = 2208 sec: FPA = -1.54 deg

Flight Path Angle
Azimuth of Relative Velocity

Figure 7.39: Soyuz re-entry coming from the ISS: Flight Path Angle and Azimuth
of the Relative Velocity vs. Time. For the entry interface passage at t=2208
seconds the value of the FPA is indicated. It matches very well the reference
value as seen in Table 7.3.

-60

-40

-20

0

20

40

60

-100 -80 -60 -40 -20 0 20 40 60 80

La
tit

ud
e

[d
eg

]

Longitude [deg]

Soyuz ballistic re-entry from ISS

r = 10.7 km

r = 102.1 km

De-orbit burn

Figure 7.40: Soyuz re-entry coming from the ISS: Latitude vs. Longitude. The
spacecraft’s geographic positions during the main events (de-orbit burn, entry in-
terface passage, parachute deployment) are indicated. The capsule touches down
in Kazakhstan as expected.

7.3 Launch trajectories

This section contains three examples of computed launch trajectories. The first one is the
launch of an Ariane 44LP rocket assumed to take place in the equatorial plane. Thereafter,
the results for two launches of a Soyuz rocket from the European launch pad in Kourou in
French Guiana are shown. They differ slightly in the formulation of the pitch law and refer
to reference cases presented in [15] and [20]. Before going deeper into the different examples
some general remarks concerning launch trajectories shall be made.

75

CHAPTER 7. THE RESULTS: TRAJECTORIES

As previously mentioned in chapters 4.2 and 6.1.1.5 a pitch law needs to be imposed during
the ascent in order to lead the launcher on its way to space. However, it is very difficult to
find detailed data for the formulation of this pitch law for any launch configuration. In most
cases the pitch law has to be derived from plots as no analytical expressions are accessible.
In addition to that, the values for the mass, the thrust, the specific impulse or the burn
duration of an engine can vary significantly if one refers to different data sources. Some of
the parameters are also mission dependent. All these inconsistencies lead to uncertainties in
the computation of the trajectory.

Concerning the equations of motion a small modification has to be made for the computation
of a launch: It has to be considered that as long as the pitch angle ϑL (or ϑI) is set to 90◦

(typically the first couple of seconds after lift off) the flight path angle γ remains 90◦ as well.
From that it results, that for this period the differential equation describing changes in the
azimuth of the relative velocity (3.35) needs to be disregarded in order to avoid a division by
zero.

7.3.1 Ariane 44LP: Launch in the equatorial plane

Although a launch in the equatorial plane (i.e. launch pad sited on the equator and a target
orbit with i = 0◦) is not a very realistic case, this examples provides the possibility to compare
the results to data from other sources and thus to validate the program. As mentioned above,
the launcher configuration and the pitch law are crucial elements for the computation of
the launch trajectory. Table 7.4 contains the pitch law used for the computation of this
Ariane launch. In Figure 7.41 a graphical representation is given. This pitch law refers to a

Time period [s] ϑI at the beginning ϑI at the end
0.0 < t < 12.0 90.0◦ 90.0◦

12.0 < t < 25.0 90.0◦ 89.5◦

25.0 < t < 30.0 89.5◦ 88.0◦

30.0 < t < 40.0 88.0◦ 86.0◦

40.0 < t < 100.0 86.0◦ 51.8◦

100.0 < t < 130.0 51.8◦ 29.4◦

130.0 < t < 150.0 29.4◦ 22.8◦

150.0 < t < 540.0 29.4◦ −7.2◦

540.0 < t < 1082.0 −7.2◦ −58.0◦

1082.0 < t < 1100.0 −58.1◦ −61.0◦

Table 7.4: Pitch law for the computation of the Ariane 44LP launch in the equa-
torial plane. The values of ϑI refer to a Galilean reference frame, i.e. they are
measured with respect to the launch pad.

Galilean reference frame, so that the pitch angle ϑI is measured relative to the launch pad.
Figure 7.42 is taken from [18] and shows the pitch law that served as a basis for the derivation
of Figure 7.41.

For an Ariane launcher different mission dependent booster configurations are possible. The
Ariane 44LP version is a three stage rocket whose first stage consists of four main engines
combined with two liquid and two solid boosters. Figure 7.50 shows an Ariane 44LP lifting
off from French Guiana. The solid and liquid boosters attached to the main body are clearly

76

CHAPTER 7. THE RESULTS: TRAJECTORIES

-60

-40

-20

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000 1100

G
al

ile
an

 P
itc

h
A

ng
le

 [d
eg

]

Time [sec]

Ariane 44LP Launch

Figure 7.41: Ariane 44LP Launch Trajectory: Galilean Pitch Angle vs. Time. The
plot depicts the pitch law defined in Table 7.4. This pitch law is used for the
trajectory computation.

Figure 7.42: Reference pitch law for an Ariane 44LP launch. The Galilean Pitch
Angle is shown as a function of time. This plot served as a basis for the deriva-
tion of the pitch law depicted in Figure 7.41 as an analytical expression of the
pitch law for this Ariane 44LP launch is not accessible. (Taken from [18])

77

CHAPTER 7. THE RESULTS: TRAJECTORIES

visible. As pointed out previously, the characteristics of the boosters and the stages can vary
if different data sources are considered.2 The result of the computation here are based on the
first stage configuration described in Table 7.5. Table 7.6 contains the values for the second
and third stage.

First stage
Main engine:
Total thrust 4· 689150 N
Angle between thrust and spacecraft main axis 0◦

Specific impulse 2432 m/s
Total propellant mass 233680 kg
Separation mass 17750 kg
Burn time 0-208.5 sec
Separation time 209.5 sec

Liquid boosters:
Total thrust 2· 625000 N
Angle between thrust and spacecraft main axis 9◦

Specific impulse 2404 m/s
Total propellant mass 79150 kg
Separation mass 8850 kg
Burn time 0-142 sec
Separation time 149 sec

Solid boosters:
Total thrust 2· 670000 N
Angle between thrust and spacecraft main axis 12◦

Specific impulse 2368 m/s
Total propellant mass 19000 kg
Separation mass 6200 kg
Burn time 3-39 sec
Separation time 66 sec

Table 7.5: Characteristics of the Ariane 44LP first stage booster combination as
used for the trajectory computation.

Besides the structural mass of the launcher and the propellant mass three additional mass
items are considered for the trajectory computation. The payload mass is assumed to be
3195 kg. The fairing, jettisoned after 287 seconds, has a mass of 831 kg. And finally, 6000 kg
of water are burned at a constant rate during the firing of the main engine in order to cool
the nozzles. In that respect it is important to know, that the rocket lifts off 3.4 seconds after
the ignition. That means that some fuel is already burned while the launcher is still on the
launch pad.

With all this information, the mass and the thrust history of the launcher is determined.
For the reference surface a value of S = 23 m2 is assumed during the whole ascent phase. The

2In [21] and [22] descriptions of the most common launch systems can be found. One will notice that some
of the figures differ significantly.

78

CHAPTER 7. THE RESULTS: TRAJECTORIES

Second stage
Total thrust 807800 N
Angle between thrust and spacecraft main axis 0◦

Specific impulse 2870 m/s
Total propellant mass 35490 kg
Separation mass 3720 kg
Burn time 217-343 sec
Separation time 345 sec

Third stage
Total thrust 63200 N
Angle between thrust and spacecraft main axis 0◦

Specific impulse 4356 m/s
Total propellant mass 10838 kg
Separation mass 1780 kg
Burn time 350-1050 sec
Separation time 1100 sec

Table 7.6: Characteristics of the Ariane 44LP second and third stage boosters as
used for the trajectory computation.

lift coefficient CL is set to zero while the drag coefficient CD depends on the Mach number
as described in Table 7.7. The values for the drag coefficient are taken from [18]. The
integration time step for the computation is set to 0.1 seconds. The analytical atmosphere
model is selected and a spherically symmetric gravitational potential of the Earth is assumed.

Mach Number Drag coefficient Cd Mach Number Drag coefficient Cd

<0.3 0.90106 2.0 1.3728
0.49 0.90155 2.5 1.0076
0.51 0.75434 3.4 0.9008
0.9 0.99208 3.9 0.85
1.0 1.4322 4.1 0.68
1.12 1.9311 4.5 0.6044
1.3 1.9271 5.0 0.5863
1.55 1.7168 5.95 0.5568
1.7 1.5865 7.0 0.51189

>12.0 0.5189

Table 7.7: The drag coefficient CD of the Ariane 44LP launcher as a function of
the Mach number. These values were taken from [18].

Figure 7.43, 7.46 and 7.48 show the computed results obtained with specified input data.
The Altitude-Time profile in Figure 7.43 looks very similar to those in Figure 7.44 and Fig-
ure 7.45 which are taken from [16] and [18] for comparison. However, one can see that the
trajectories do not match perfectly. A possible reason was already mentioned: The results
depend sensitively on the imposed pitch law and also on the mass and thrust history. Since

79

CHAPTER 7. THE RESULTS: TRAJECTORIES

reliable values for these parameters, belonging to the trajectories shown in Figure 7.44 and
7.45, are not accessible, the flight profile can not be recomputed exactly. However, the pre-
sented plots reveal that the general characteristics of the trajectory are well reproduced. This
hold true for the plots of the Altitude-Time profile already mentioned above, but also for
those showing the Velocity-Time profile (Figure 7.46 and 7.47) and the Load Factor-Time
profile (Figure 7.48 and 7.49).

Thus, this example confirms that launch trajectories can be computed with the same ap-
proach previously applied to the other flight phases.

0

20

40

60

80

100

120

140

160

180

200

220

0 100 200 300 400 500 600 700 800 900 1000 1100

A
lti

tu
de

 [k
m

]

Time [sec]

Ariane 44LP Launch

solid booster separation

liquid booster separation

1st stage separation

fairing jettisoning

2nd stage separation

Figure 7.43: Ariane 44LP Launch Trajectory: Altitude vs. Time. The main events
during the ascent (e.g. the separation of the different stages) are indicated. After
approximately 600 seconds the rocket redescends in order to gain more velocity.
This behavior as well as the final ascent after 920 seconds is controlled via the
imposed pitch law.

Figure 7.44: Reference trajectory (1) for an Ariane 44LP launch showing Altitude
vs. Time. The main events during the ascent are indicated. (Taken from [16]
for comparison)

80

CHAPTER 7. THE RESULTS: TRAJECTORIES

Figure 7.45: Reference trajectory (2) for an Ariane 44LP launch showing Altitude
vs. Time. (Taken from [18] for comparison)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500 600 700 800 900 1000 1100

R
el

at
iv

e
V

el
oc

ity
 [m

/s
]

Time [sec]

Ariane 44LP Launch

solid booster separation

liquid booster separation

1st stage separation

fairing jettisoning

2nd stage separation

Figure 7.46: Ariane 44LP Launch Trajectory: Relative Velocity vs. Time

Figure 7.47: Reference trajectory (1) for an Ariane 44LP launch showing Relative
Velocity vs. Time. (Taken from [16] for comparison)

81

CHAPTER 7. THE RESULTS: TRAJECTORIES

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600 700 800 900 1000 1100

Lo
ad

 F
ac

to
r

[g
]

Time [sec]

Ariane 44LP Launch

so
lid

 b
oo

st
er

 s
ep

ar
at

io
n

liq
ui

d
bo

os
te

r
se

pa
ra

tio
n

1st stage separation
fa

iri
ng

 je
tti

so
ni

ng
2nd stage separation

Figure 7.48: Ariane 44LP Launch Trajectory: Load Factor vs. Time

Figure 7.49: Reference trajectory (1) for an Ariane 44LP launch showing Load
Factor vs. Time. (Taken from [16] for comparison)

Figure 7.50: An Ariane 44LP lifting off from a launch pad in French Guiana. The
solid and liquid boosters attached to the main body are clearly visible. (Courtesy
of ESA)

82

CHAPTER 7. THE RESULTS: TRAJECTORIES

7.3.2 Soyuz: Launch from Kourou (1)

This example does not only consider another launch system than the previous one but it also
represents a more realistic trajectory: A Soyuz rocket is launched from Kourou in French
Guiana aiming for a transfer orbit with an inclination of i = 51.6◦. This corresponds to
the inclination of the orbit of the ISS. Compared to the example of the next section (7.3.3)
the only difference is the imposed pitch law. Thus, the influence of the pitch angle will
become more transparent, as the mass, the thrust and other parameters are the same for
both examples. The pitch law used for the computation of the first Soyuz launch trajectory
is shown in Table 7.8. A graphical representation is given in Figure 7.8. In order to derive
this pitch law, Figure 7.52 that was taken from [15] served as a reference.

Time period [s] ϑI at the beginning ϑI at the end
0.0 < t < 25.0 90.0◦ 90.0◦

25.0 < t < 45.0 90.0◦ 80.0◦

45.0 < t < 92.0 80.0◦ 49.5◦

92.0 < t < 129.0 49.5◦ 37◦

129.0 < t < 143.0 37.0◦ 30◦

143.0 < t < 285.0 30.0◦ 11.1◦

285.0 < t < 300.0 11.1◦ 11.1◦

300.0 < t < 308.0 11.1◦ 13.3◦

308.0 < t < 540.0 13.3◦ −10.0◦

Table 7.8: Pitch law for the computation of a Soyuz launch from Kourou as derived
from Figure 7.52. The values refer to a Galilean reference frame, i.e. they are
measured with respect to the launch pad.

-20

-10

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

G
al

ile
an

 P
itc

h
A

ng
le

 [d
eg

]

Time [sec]

Soyuz from Kourou - Lauch Simulation(Soyuz-Manual)

Figure 7.51: Soyuz Launch Trajectory (1): Galilean Pitch Angle vs. Time. The
plot corresponds to the data contained in Table 7.8.

Like the Ariane 44LP the Russian Soyuz rocket is a three stage rocket. The first stage
consists also of four engines but it does not have any additional boosters. At the end of the
following section Figure 7.70 shows a Soyuz rocket during lift off. Table 7.9 summarizes the

83

CHAPTER 7. THE RESULTS: TRAJECTORIES

Figure 7.52: Reference pitch law for a Soyuz launch. The Galilean Pitch Angle is
shown as a function of time. The pitch law shown in Figure 7.51 was derived
from this plot. (Taken from [15])

First stage
Total thrust 4· 1021000 N
Angle between thrust and spacecraft main axis 0◦

Specific impulse 3129.39 m/s
Total propellant mass 156640 kg
Separation mass 19874.3 kg
Burn time 0-118.3 sec
Separation time 118.3 sec

Second stage
Total thrust 990200 N
Angle between thrust and spacecraft main axis 0◦

Specific impulse 3129.39 m/s
Total propellant mass 90100 kg
Separation mass 8165 kg
Burn time 0-278 sec
Separation time 278 sec

Third stage
Total thrust 298000 N
Angle between thrust and spacecraft main axis 0◦

Specific impulse 3521.79 m/s
Total propellant mass 25400 kg
Separation mass 2026 kg
Burn time 280-578 sec
Separation time 578 sec

Table 7.9: Characteristics of the three stage Soyuz launcher as used for the tra-
jectory computation.

84

CHAPTER 7. THE RESULTS: TRAJECTORIES

characteristics of all stages as assumed for the computation. If one compares the properties
of the Soyuz launcher with those of the Ariane 44LP it shows that the Russian rocket is much
more powerful. That indicates that the Soyuz rocket reaches the desired injection parameters
much earlier. Hence, the flight profile looks completely different compared to that of an
Ariane launcher.

For the computation of the Soyuz trajectory three additional mass items are considered.
The fairing with a mass of 2700 kg is jettisoned after 203 seconds. Furthermore, inert mass
is ejected at a constant rate during the firing of the first and second stage. It is assumed that
during the first 118.3 seconds 3500 kg are ejected and, in addition to that, during the first
278 seconds another 700 kg. The liftoff takes place instantaneously at t = 0 seconds. For the
reference surface a value of S = 23 m2 is chosen. In Table 7.10 the drag coefficient CD is given
as a function of the Mach number. The lift coefficient CL is set to zero. The gravitational
potential of the Earth is assumed to be spherically symmetric. For the atmosphere the
analytical model is selected.

Mach Number Drag coefficient CD Mach Number Drag coefficient CD

<0.7 2.22 1.1 3.08
0.8 2.17 1.5 2.4
0.9 2.46 2.0 1.92
1.0 3.09 >3.0 1.28
1.05 3.2

Table 7.10: The drag coefficient CD of the Soyuz launcher as a function of the
Mach number. (Courtesy of ESA/EADS)

While the launch of the Ariane 44LP of the previous example takes place in the equatorial
plane, this configuration shall present a more realistic trajectory. Thus, the position of the
launch pad and the initial azimuth of the relative velocity have to be specified. The launch
pad is chosen to be one of the European spaceport in Kourou in French Guiana. Its geographic
coordinates are l0 = 307.22◦E and L0 = 5.24◦N . The launch azimuth needs to be set to
χ0 = 40.22◦ in order to reach a transfer orbit leading finally to the desired orbit of the ISS.
The integration time step is set to 0.1 seconds like in the previous example.

Figures 7.53, 7.55, 7.56 and 7.58 show the results of the trajectory computation. Cor-
responding plots from [15] are presented in parallel in Figures 7.54 and 7.57. Like in the
previous section it shows that the general trajectory properties are reproduced very well. An
exact copy of the reference plots, however, is not achieved as uncertainties in the pitch law
and the mass and thrust history can not be avoided.

As expected a comparison between the launch trajectory of the Soyuz rocket and that of
the Ariane 44LP launcher reveals completely different flight profiles (see Figures 7.53 and
7.43). This results mainly from different booster configurations and the differences in the
imposed pitch law enabling the Soyuz rocket to reach its desired altitude directly and much
faster. The influence of the pitch law on the trajectory is also investigated in the next section
where a different pitch law is imposed on the Soyuz launcher configuration already used in
this section.

85

CHAPTER 7. THE RESULTS: TRAJECTORIES

0

50

100

150

200

250

300

0 100 200 300 400 500 600

A
lti

tu
de

 [k
m

]

Time [sec]

Soyuz from Kourou - Lauch Simulation(Soyuz-Manual)

Figure 7.53: Soyuz Launch Trajectory (1): Altitude vs. Time

Figure 7.54: Reference trajectory for a typical Soyuz launch showing the altitude
as a function of time. (Taken from [15] for comparison)

4

6

8

10

12

14

16

307 308 309 310 311 312 313 314 315 316 317

La
tit

ud
e

[d
eg

]

Longitude [deg]

Soyuz from Kourou - Lauch Simulation(Soyuz-Manual)

Figure 7.55: Soyuz Launch Trajectory (1): Latitude vs. Longitude. The ground-
track shows that the rocket is on the way to an inclined orbit.

86

CHAPTER 7. THE RESULTS: TRAJECTORIES

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600

R
el

at
iv

e
V

el
oc

ity
 [m

/s
]

Time [sec]

Soyuz from Kourou - Lauch Simulation(Soyuz-Manual)

Figure 7.56: Soyuz Launch Trajectory (1): Relative Velocity vs. Time

Figure 7.57: Reference trajectory for a typical Soyuz launch showing the relative
velocity as a function of time. (Taken from [15] for comparison)

-10

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500 550 600

A
ng

le
 [d

eg
]

Time [sec]

Soyuz from Kourou - Launch Simulation(Soyuz-Manual)

Flight Path Angle
Azimuth of Relative Velocity

Figure 7.58: Soyuz Launch Trajectory (1): Flight Path Angle and Azimuth of the
Relative Velocity vs. Time

87

CHAPTER 7. THE RESULTS: TRAJECTORIES

7.3.3 Soyuz: Launch from Kourou (2)

As mentioned at the beginning of the previous section the following example is very similar
to the one presented there. However, there is one important difference: The imposed pitch
law. Instead of using the values of Table 7.8, a second pitch law is used for which Table 7.11
contains the approximated analytical expressions. This pitch law is also plotted in Figure 7.59
and is derived from Figure 7.60.

Time period [s] ϑI at the beginning ϑI at the end
0.0 < t < 12.0 90.0◦ 90.0◦

12.0 < t < 17.9 90.0◦ 86.3◦

17.9 < t < 20.0 86.3◦ 86.3◦

20.0 < t < 36.8 86.3◦ 76.8◦

36.8 < t < 61.3 76.8◦ 60.0◦

61.3 < t < 80.6 60.0◦ 46.3◦

80.6 < t < 100 46.3◦ 36.7◦

100.0 < t < 117.0 36.7◦ 30.2◦

117.0 < t < 120.0 30.2◦ 35.8◦

120.0 < t < 205.0 35.8◦ 25.2◦

205.0 < t < 319.0 25.2◦ 12.5◦

319.0 < t < 400.0 12.6◦ 4.4◦

400.0 < t < 450.0 4.4◦ −1.0◦

450.0 < t < 567.0 −1.0◦ −12.6◦

Table 7.11: Pitch law for the computation of a Soyuz launch from Kourou as
derived from Figure 7.60 provided by ESA/EADS [20]. The values refer to a
Galilean reference frame, i.e. they are measured with respect to the launch pad.

-20

-10

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

G
al

ile
an

 P
itc

h
A

ng
le

 [d
eg

]

Time [sec]

Soyuz from Kourou - Lauch Simulation

Figure 7.59: Soyuz Launch Trajectory (2): Galilean Pitch Angle vs. Time. This
pitch law is summarized in Table 7.11.

Like in the previous section the launch of a Soyuz rocket from Kourou is computed. Hence,
the input parameters equal exactly those of the previous section: The evolution of the thrust

88

CHAPTER 7. THE RESULTS: TRAJECTORIES

Figure 7.60: Reference pitch law for a Soyuz launch from Kourou. The Galilean
Pitch Angle is shown as a function of time. This plot served as a basis for the
derivation of the pitch law shown in Figure 7.59. (Courtesy of ESA/EADS [20])

and the mass, prescribed by Table 7.9, as well as the drag coefficient (Table 7.10) and the
launch pad coordinates are identical. The integration time step is set to 0.1 seconds. For
the atmosphere the analytical model is selected and the gravitational field is assumed to be
spherically symmetric.

The computed results are shown in Figures 7.61, 7.63, 7.65, 7.67 and 7.68. Correspond-
ing figures from ESA/EADS are shown in parallel. While the results match very well the
reference plots, one will notice that they look different compared to those of the previous
section. The altitude after 500 seconds, for instance, is now almost 50 km lower than in the
previous example (Figure 7.61), whereas the relative velocity is slightly higher (Figure 7.63).
A comparison of Figure 7.68 with Figure 7.55, both showing the ground-track of the trajec-
tory, reveals also differences. They all result from the variations in the imposed pitch law
underlining its important role in leading a rocket to the desired injection parameters.

0

50

100

150

200

250

0 100 200 300 400 500 600

A
lti

tu
de

 [k
m

]

Time [sec]

Soyuz from Kourou - Lauch Simulation

Figure 7.61: Soyuz Launch Trajectory (2): Altitude vs. Time. Compared to Fig-
ure 7.53 the altitude after 500 seconds is almost 50 km lower.

89

CHAPTER 7. THE RESULTS: TRAJECTORIES

Figure 7.62: Reference trajectory for a Soyuz launch from Kourou. The altitude
is shown as a function of time. (Courtesy of ESA/EADS [20])

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600

R
el

at
iv

e
V

el
oc

ity
 [m

/s
]

Time [sec]

Soyuz from Kourou - Lauch Simulation

Figure 7.63: Soyuz Launch Trajectory (2): Relative Velocity vs. Time. Compared
to Figure 7.56 the velocity in this plot is slightly higher.

Figure 7.64: Reference trajectory for a Soyuz launch from Kourou. The relative
velocity is shown as a function of time. (Courtesy of ESA/EADS [20])

90

CHAPTER 7. THE RESULTS: TRAJECTORIES

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600

Lo
ad

 F
ac

to
r

[g
]

Time [sec]

Soyuz from Kourou - Lauch Simulation

Figure 7.65: Soyuz Launch Trajectory (2): Load Factor vs. Time

Figure 7.66: Reference trajectory for a Soyuz launch from Kourou. The load factor
is shown as a function of time. (Courtesy of ESA/EADS [20])

-10

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500 550 600

A
ng

le
 [d

eg
]

Time [sec]

Soyuz from Kourou - Launch Simulation

Flight Path Angle
Azimuth of Relative Velocity

Figure 7.67: Soyuz Launch Trajectory (2): Flight Path Angle and Azimuth of the
Relative Velocity vs. Time

91

CHAPTER 7. THE RESULTS: TRAJECTORIES

4

6

8

10

12

14

16

18

307 308 309 310 311 312 313 314 315 316 317

La
tit

ud
e

[d
eg

]

Longitude [deg]

Soyuz from Kourou - Lauch Simulation

Figure 7.68: Soyuz Launch Trajectory (2): Latitude vs. Longitude. It can be seen
that the rocket is on its way to an inclined orbit. Differences between this plot
and Figure 7.55 arise due to differences in the imposed pitch laws.

Figure 7.69: Reference trajectory for a Soyuz launch from Kourou. The latitude
is shown as a function of the longitude. (Courtesy of ESA/EADS [20])

Figure 7.70: A Soyuz rocket lifting off. (Courtesy of ESA)

92

Chapter 8

The Quality of the Numerical
Integrator

In this chapter the long term behavior of the numerical integrator scheme is analyzed in greater
detail. This offers the possibility to compare the performance of the 8th-order Runge-Kutta
algorithm to that of other numerical integrators commonly used for astrophysical computa-
tions. Comparing the different schemes is, however, not as easy as it might appear. This
arises due to the fact that in most accessible scientific literature the quality of integrators
for orbital mechanics is deduced from errors in the eccentricity or the semi-major axis of
the orbit as the computations are normally based on the six classical orbital elements (Fig-
ure 2.1). Since in the mathematical approach presented here neither the eccentricity nor the
semi-major axis is part of the equations, a direct comparison of the numerical schemes is not
possible. Therefore the following actions are taken in order to analyze the numerical scheme
and to make a (limited) comparison possible:

1. Derivation and analysis of the eccentricity from the computed results: By com-
paring numerical results for the eccentricity of different orbits with analytical results,
the quality of the former ones can be derived. Although the eccentricity of the com-
puted classical Keplerian orbits is not an output variable and was of minor interest (see
subsections 7.1.1.-7.1.3.), its value can be obtained from the results of the numerical
integration by different means. Here, the focus is on the following three methods:

• Three Point Method: Three points of the orbit (equally distributed along the
trajectory) are taken and the shape of the ellipse is calculated by using the basic
equation of an ellipse.

• Least Squares Method: A certain number of points along the trajectory is selected
and the eccentricity is computed by using a least squares fit.

• Runge-Lenz-Vector: The Runge-Lenz-Vector is calculated as its absolute value
equals the eccentricity.

2. Derivation and analysis of the apogee and perigee from the computed results:
Following the approach presented above the apogee and the perigee of the orbit are cal-
culated. Again, the least squares method is applied and the long term behavior of these
variables is investigated.

93

CHAPTER 8. THE QUALITY OF THE NUMERICAL INTEGRATOR

3. Analysis of the behavior of the radius vector r: This variable is part of the differ-
ential equations (3.21). By comparing its computed value to another one obtained from
the solution of an analytical expression for r the accuracy of the integrator scheme can
be derived.

4. Calculation and analysis of the angular momentum: Since the angular momentum
should be conserved during an unperturbed orbit propagation, changes in its value are
an indicator for the quality of the numerical scheme.

5. Analysis of the behavior of the latitude L and the azimuth χ: For an equatorial
orbit these variables should remain constant. Thus, for such an orbit any changes in
these variables are based on numerical errors produced by the integrator.

8.1 The performance of the Runge-Kutta algorithm

All methods described above are investigated. Different configurations and conditions are
selected (e.g. different eccentricities) in order to get a better understanding of the behavior
of the numerical scheme. The obtained results are presented in the following subsections.

8.1.1 Errors in the eccentricity

As mentioned above three different methods are used to calculate the eccentricity of the orbit.
Each approach is discussed in detail.

Three Point Method:

By taking three points of each orbit the eccentricity of the orbital ellipse can be calculated,
as shown in the following.

An ellipse is completely defined by

(x− c)2

a2
+

y2

b2
= 1 (8.1)

where a is the semi-major axis, b the semi-minor axis and c a shift required to put one focus of
the ellipse in the origin of the x-y-plane. The eccentricity e can be calculated via the relation

e =
c

a
. (8.2)

Let the ellipse now represent a satellite orbit. Then x and y can be computed easily if the
Earth is assumed to be non-rotating (~Ω = 0). In this case it is

x = −r(t) · cos l(t), y = −r(t) · sin l(t) (8.3)

with l(t) as geographic longitude and Greenwich pointing in negative x direction, and r(t)
being the altitude vector.

Thus, since x and y are known and prescribed, equation (8.1) has to be solved for a, b and
c. Define

α :=
1
a2

, β := −2c

a2
, γ :=

1
b2

(8.4)

94

CHAPTER 8. THE QUALITY OF THE NUMERICAL INTEGRATOR

and get

αx2 + βx + γy2 = 1− β2

4α
. (8.5)

By taking three values for x and y the following system of equations is obtained

x2
1 x1 y2

1

x2
2 x2 y2

2

x2
3 x3 y2

3

α
β
γ

 =

(
1− β2

4α

)

1
1
1

 .

It is possible to solve this system explicitly for α, β and γ (e.g. by applying Cramer’s Rule)
from which the required values of a, b and c can be derived via (8.4). The eccentricity e
follows then with equation (8.2).

The results of the Three Point Method for two orbits with different eccentricities (e = 0.58,
e = 0.27) are shown in Figure 8.1. In both cases each orbit consists of 63 integration steps. It

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 500 1000 1500 2000 2500 3000 3500 4000

E
rr

or
 [l

og
10

(d
el

ta
_e

/e
)]

Orbits

Relative Error of Eccentricity for two different orbits using Three Point Method

e=0.58
e=0.27

Figure 8.1: Errors in the eccentricity for two different orbit configurations. In each
case three out of 63 points per orbit are taken in order to compute the eccentricity
via the Three Point Method. The theoretical values for the eccentricities are
e=0.57 and e=0.27.

shows that the error for the more eccentric orbit is remarkably bigger. However, in both cases
the error varies over several orders of magnitude in relative short time periods and reaches
a maximum of approximately 10 % for the more eccentric orbit. Although one can already
see, that fitting these curves might lead to better and more plausible results, the behavior of
the Three Point Method is to be examined in greater detail, in order to check whether the
fluctuations are produced by integrator or whether they result from the applied method.

By analyzing the Three Point Method more accurately it shows that numerical effects can
overlap the errors produced by the integrator. The implementation of the Three Point Method
is very sensitive with respect to the integration time step and hence also with respect to the
selected three points and their position along the orbit. Figure 8.2 shows the results for two
computations of an orbit with e = 0.27, where the only difference is a small modification of
the integration time step. One curve is very similar to the results shown in Figure 8.1: The
error varies over a wide range of magnitudes. The second curve, however, is very smooth,

95

CHAPTER 8. THE QUALITY OF THE NUMERICAL INTEGRATOR

and the fluctuations have disappeared (except for one minimum). Nevertheless, fitting both
curves would lead to comparable results. Thus, one can conclude that numerical effects are
the reason for the big fluctuations in Figures 8.1 and 8.2 and that the results obtained with
the implemented Three Point Method are very sensitive with respect to their input.

-9

-8

-7

-6

-5

-4

-3

-2

-1

0 500 1000 1500 2000 2500 3000 3500 4000

E
rr

or
 [l

og
10

(d
el

ta
_e

/e
)]

Orbits

Relative Error of Eccentricity using Three Point Method

e=0.27, dt=133.2
e=0.27, dt=133.3

Figure 8.2: Errors in the eccentricity for two different integration time steps when
the Three Point Method is applied. The orbit has an eccentricity of e=0.27 and
consists of approximately 63 integration steps. Thus, the results are comparable
to those in Figure 8.1. Although the orbit configuration is exactly the same and
the integration time step differs only by 0.1 seconds, the two plots look completely
different, possibly due to numerical effects.

-10

-5

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000 3500 4000

X
 [l

og
10

(d
el

ta
_e

/e
)]

Orbits

Relative Error and related Parameters for Three Point Method

Error: e=0.27, dt=133.3
Evolution of D
Evolution of D1
Evolution of D2
Evolution of D3

Figure 8.3: Errors in the eccentricity for an orbit with e=0.27 and underlying pa-
rameters for the Three Point Method. The curve labelled “Error” corresponds
to the fluctuating plot already depicted in Figure 8.2. Additionally, the evolu-
tion of the values of four determinants (D-D3) used for the computation of the
eccentricity is shown. It seems as if there is a concrete connection between the
fluctuations in the error and the corresponding values of the determinants.

96

CHAPTER 8. THE QUALITY OF THE NUMERICAL INTEGRATOR

Apparently, some combinations of the three points, that are selected along the orbit, lead
to singularities and cause fluctuations when the eccentricity is computed. The current im-
plementation requires the computation of several determinants when the system of equation
shown above is to be solved. Here, a possible reason for the occurring singularities might be
hidden, as the computation of these determinants can be problematic when the values are
very small or very big. Figure 8.3 shows again one of the error curves already depicted in
Figure 8.2. In parallel the evolution of different determinants used for the computation of e
is presented. As one can see, the different maxima in the error are directly connected to the
minima in the values for the determinants. This underlines that most likely the fluctuations
are caused by singularities occurring during the computation of the eccentricity1.

In order to avoid the singularities and consequently also the fluctuations, it seems reasonable
to validate the results by applying the Least Squares Method to the data. This methods
considers all 63 values per orbit for x and y instead of taking only three points to calculate
the eccentricity. Thus, problematic combinations of three points are no longer possible.

Least Squares Method:

This method is also based on equation (8.1) like the Three Point Method. Rewriting this
equation as

x2 − 2cx +
a2

b2
y2 = a2 − c2 (8.6)

and defining

α := a2 − c2, β :=
a2

b2
(8.7)

leads to
x2 − 2xc + βy2 = α . (8.8)

Since a certain number of values for x and y is given the best least squares fit for the unknown
variables α, β and c is found where it holds

〈(x2 − 2cx + βy2 − α)2〉 → Min . (8.9)

Thus, one demands
∂

∂α
〈(x2 − 2cx + βy2 − α)2〉 = 0 ! (8.10)

∂

∂β
〈(x2 − 2cx + βy2 − α)2〉 = 0 ! (8.11)

∂

∂c
〈(x2 − 2cx + βy2 − α)2〉 = 0 ! (8.12)

Respecting the partial derivations, these equations can be transformed into the following
system

1 −〈y2〉 2〈x〉

〈y2〉
〈y4〉 −1 2

〈xy2〉
〈y4〉

〈x〉
2〈x2〉 −〈y

2x〉
2〈x2〉 1

α
β
c

 =

〈x2〉

〈x2y2〉
〈y4〉

〈x3〉
2〈x2〉

1An enhanced implementation of the Three Point Method, yet to be investigated, might be more stable.

97

CHAPTER 8. THE QUALITY OF THE NUMERICAL INTEGRATOR

Like in the previous section Cramer’s Rule can be used to solve this system for α, β and c.
From that, a and b can be obtained via (8.7) and the eccentricity e follows directly via (8.2).

Figure 8.4 shows the results obtained with the Least Squares Method. By comparing these
results to those of the Three Point Method (Figure 8.1) it shows that the variations in the
errors have disappeared while the different orders of magnitude of the error for the different
eccentricities are still present.

-10

-9

-8

-7

-6

-5

-4

-3

-2

0 500 1000 1500 2000 2500 3000 3500 4000

E
rr

or
 [l

og
10

(d
el

ta
_e

/e
)]

Orbits

Relative Error of Eccentricity for two different orbits using Least Squares Method

e=0.58
e=0.27

Figure 8.4: Errors in the eccentricity for two different orbit configurations. In
each case 63 points per orbit are taken and the Least Squares Method is applied.
The theoretical values for the eccentricity are e=0.58 and e=0.27.

The minimum appearing in Figure 8.4 in the plot for the orbit with e = 0.27 results
from the fact that the computed orbit undergoes the following evolution: At the beginning
the eccentricity is underestimated compared to the theoretical value. Then the eccentricity
begins to increase steadily and in consequence it reaches approximately the theoretical value
at some point in time (the minimum of the error). Finally the orbit gets more and more
eccentric and the error increases again.

Runge-Lenz-Vector:

The Runge-Lenz-Vector is defined as

~e =
~V × ~Mr

γG(m1 + m2)
− ~r

r
, (8.13)

where ~V is the velocity, ~Mr = ~r × ~V represents the reduced angular momentum, γG is the
gravitational constant and m1 and m2 are the masses of the bodies orbiting each other. Since
|~e | equals the eccentricity of the orbit this method offers another possibility to compute the
error in the eccentricity. By applying basic geometry |~e | can be computed from the variables
r, V and γ. Figure 8.5 shows that the results obtained with the Runge-Lenz-Vector fully
confirm those of the previous methods.

98

CHAPTER 8. THE QUALITY OF THE NUMERICAL INTEGRATOR

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

E
rr

or
 [l

og
10

(d
el

ta
_e

/e
)]

Time [sec] (approx. 4000 orbits)

Relative error of the Eccentricity using Runge-Lenz-Vector

e=0.27
e=0.58

Figure 8.5: Errors in the eccentricity for two different orbit configurations. The
errors are calculated from the absolute value of the Runge-Lenz-Vector. The
theoretical values for the eccentricity are e=0.58 and e=0.27.

8.1.2 Errors in the apogee and perigee

From equation (8.6) and the results following thereafter the apogee and the perigee of the
orbit can be calculated via

rapo = a + c, rperi = a− c (8.14)

after the Least Squares Method has been applied. Thus, not only the long term behavior of
the eccentricity but also that of the apogee and perigee can easily be analyzed.

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0 500 1000 1500 2000 2500 3000 3500 4000

E
rr

or
 [l

og
10

(d
el

ta
_r

/r
)]

Orbits

Relative Error of Apogee and Perigee for two different orbits using Least Squares Method

apogee 0.58
perigee 0.58
apogee 0.27
perigee 0.27

Figure 8.6: Errors in the apogee and perigee for two different orbit configurations.
In each case 63 points per orbit are taken and the Least Squares Method is applied.
The theoretical values for the eccentricity are e=0.58 and e=0.27.

The results of this computation are plotted in Figure 8.6. It shows that the errors in
the apogee are much bigger than those in the perigee. Furthermore, the errors for the highly
eccentric orbit are again much bigger than those for the orbit with a smaller eccentricity. This
behavior is known for other kinds of astrophysical many body integrators, too (see [27]).

99

CHAPTER 8. THE QUALITY OF THE NUMERICAL INTEGRATOR

8.1.3 Errors in the radius vector

By analyzing the behavior of the radius vector r, a variable is considered that is used directly
in the differential equations. The results of the numerical integrator can be compared to those
obtained from the equation of a conic section in polar coordinates

r =
p

1 + e · cos(θ)
(8.15)

with p = (a(1− e2)) being the focal parameter. e and a are prescribed and if a non-rotating
Earth is assumed, θ equals the longitude l used in differential equations. Thus, if the actual
value of l is plugged into (8.15) the corresponding value for r is obtained for each time step.
The result can then be compared to the actual value calculated by the integrator.

For the computation 63 integration steps per orbit are taken. Figure 8.7 and Figure 8.8
show the results. They are in good agreement with those of the previous sections. For a
circular orbit, however, the errors are remarkably smaller and corresponds to those of the
latitude for an equatorial orbit shown in 8.1.5 later in this chapter.

-12

-11

-10

-9

-8

-7

-6

-5

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

E
rr

or
 [l

og
10

(d
el

ta
_r

/r
)]

Time [sec] (approx. 4000 orbits)

Relative Error of the Radius Vector (e=0.27)

Figure 8.7: Errors in the radius vector for an orbit with an eccentricity of 0.27

-9

-8

-7

-6

-5

-4

-3

-2

-1

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

E
rr

or
 [l

og
10

(d
el

ta
_r

/r
)]

Time [sec] (approx. 4000 orbits)

Relative Error of the Radius Vector (e=0.58)

Figure 8.8: Errors in the radius vector for an orbit with an eccentricity of 0.58

100

CHAPTER 8. THE QUALITY OF THE NUMERICAL INTEGRATOR

8.1.4 Errors in the angular momentum

If there are no additional perturbations to the orbit and no interactions with other bodies the
absolute value of the angular momentum ~M of the elliptical motion shall be conserved. In
order to check to which extent this holds true, the angular momentum has to be computed
from the given variables. A general expression for ~M is

~M = m · (~r × ~V) . (8.16)

Accordingly, for the rotating Earth reference frame, the reduced angular momentum can be
written as

Mr = r · V cos(γ) , (8.17)

where the mass of the spacecraft m is neglected. γ represents the flight path angle, r and
V are the radius vector and the relative velocity. Via (8.17) the actual value of the angular
momentum can be calculated for every integration step.

-9

-8

-7

-6

-5

-4

-3

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

E
rr

or
 [l

og
10

(d
el

ta
_M

/M
)]

Time [sec] (approx. 4000 orbits)

Relative Error of the Angular Momentum

e=0.27
e=0.58

Figure 8.9: Errors in the angular momentum for two different orbit configurations.
The theoretical values of the eccentricity are e=0.58 and e=0.27.

The evolution of the errors in the angular momentum is shown in Figure 8.9. Again, the
results underline the fact that the error for orbits with a higher eccentricity is bigger than
that for less eccentric orbits. In both cases the errors have the same order of magnitude like
the errors in the radius vector of the previous section.

8.1.5 Errors in the latitude and azimuth

Finally, the accuracy of the numerical scheme is investigated by analyzing two variables of the
differential equations that should remain constant for an equatorial orbit: The azimuth of the
relative velocity χ and the latitude L. Whatever the eccentricity might be, for an equatorial
orbit the azimuth should remain χ = 90◦ and the latitude should be constantly L = 0◦.

For 63 integration steps per orbit and two different eccentricities the results of the computa-
tion are shown in Figure 8.10 and Figure 8.11. The order of magnitude of the errors is in both
cases significantly lower than in the plots shown previously in this chapter. Furthermore, at
least for the orbit with a lower eccentricity, the errors seem to remain more or less constant,

101

CHAPTER 8. THE QUALITY OF THE NUMERICAL INTEGRATOR

while in all other cases the errors increased steadily with time. It shows again, that the results
for a less eccentric orbit are more accurate.

-16

-15.5

-15

-14.5

-14

-13.5

-13

-12.5

-12

-11.5

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

E
rr

or
 [l

og
10

(d
el

ta
_X

/X
)]

Time [sec] (approx. 4000 orbits)

Relative Error of the Local Azimuth and Latitude for an equatorial orbit with e=0.27

Latitude
Local Azimuth

Figure 8.10: Errors in the latitude and the azimuth for an equatorial orbit with an
eccentricity of e=0.27. The errors are much smaller than those of the previous
subsections and they do not seem to increase constantly in time.

-16

-15.5

-15

-14.5

-14

-13.5

-13

-12.5

-12

-11.5

-11

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

E
rr

or
 [l

og
10

(d
el

ta
_X

/X
)]

Time [sec] (approx. 4000 orbits)

Relative Error of the Local Azimuth and Latitude for an equatorial orbit with e=0.58

Latitude
Local Azimuth

Figure 8.11: Errors in the latitude and azimuth for an equatorial orbit with an
eccentricity of e=0.58. The errors are much smaller than those of the previous
subsections. However, they are slightly bigger than for the less eccentric orbit
shown above.

8.1.6 Summary of the results

The previous sections show, that the results for the performance of the 8th-order Runge-Kutta
algorithm, obtained with the different methods, are in most cases very similar. However, a
short summary is to be given here, as the results are compared to those of other numerical
integration schemes in the following.

102

CHAPTER 8. THE QUALITY OF THE NUMERICAL INTEGRATOR

1.) The orbital plane is very well conserved. Section 8.1.5 shows that for an equatorial orbit
the errors for L and χ range from 10−11 to 10−14 depending on the eccentricity.

2.) The dependency on the eccentricity is confirmed by the errors of the other analyzed
variables (e.g. radius vector, angular momentum, eccentricity). For these variables the
errors range from 10−2−10−3 to 10−5−10−6 depending on the orbit configuration. A
remarkable shift in the perigee is, however, not observed.

3.) All examples demonstrate that the errors are not oscillating but constantly increasing
in time2. Exceptions are the results of the Three Point Method (discussed below in 4.)
and those for L and χ, where the error seems to remain constant (see 8.1.5).

4.) The use of the here presented Three Point Method for the computation of the eccen-
tricity is problematic, as numerical effects can lead to huge fluctuations in the error
for certain integration time steps and for certain combinations of the three selected
points. This dependency on the input makes this method impracticable. However, it
seems plausible that a different implementation of the Three Point Method, avoiding
the occurring singularities, leads to more reliable results.

After having analyzed and discussed the 8th-order Runge-Kutta algorithm in detail a com-
parison to the performance of other integration schemes is provided in the following.

8.2 The performance of other numerical integrators and com-
parison

It was pointed out previously that a comparison between the results of the 8th-order Runge-
Kutta algorithm and other numerical integrators is not very easy. For example, it would be
inadequate to compare the results for the eccentricity directly if the other integrators were
applied to the classical formulation of the differential equations, namely the classical orbital
elements (Figure 2.1 and equations (2.1)-(2.6)). A real comparison would only be possible
if different schemes were implemented solving the same set of equations. This is, however,
not the main objective of this work. Thus, in the following some examples describing the
performance of other mathematical schemes are presented, which give an overview of the
typical accuracy of numerical integrators used in astrophysical computations.

Figures 8.12, 8.13 and 8.14 are taken from [17] and show errors in the computation of
perturbed binary systems for different numerical schemes. The errors refer either to the
eccentricity of the orbit or to the computed energy of the perturbed system. The perturbations
are caused by a distant galaxy and can be described by a tidal potential

Utid = C(−2x2 + y2 + z2) . (8.18)

By changing the constant C in (8.18), different strengths of the perturbation can be studied.
The potential Utid causes variations in the eccentricity of the binary system, so that for a
maximum relative perturbation of 0.006 (Figures 8.12 and 8.14) one finds a minimum of
e = 0.258 and a maximum e = 1. In case of a stronger relative perturbation of 0.2 (Figure 8.13)
the minimum of the eccentricity is slightly smaller while the maximum is still near e = 1 (see
[17]).

2While increasing, the error of the radius vector varies over a restricted range of magnitudes (see 8.1.3).

103

CHAPTER 8. THE QUALITY OF THE NUMERICAL INTEGRATOR

Figure 8.12: Errors in the energy in a moderately perturbed binary system for
different mathematical schemes. The plot was taken from [17] as an example of
the accuracy of other numerical integrators. The plots labelled H1, H2 and H3
give errors for Hermite schemes whereas the curves labelled with c1 and c2 plot
the errors for a method using Stumpff’s c-functions.

Figure 8.13: Errors in the energy in a strongly perturbed binary system for dif-
ferent mathematical schemes. The plot was taken from [17] as an example of
the accuracy of other numerical integrators. The curve labelling is same as in
Figure 8.12.

The plots depict the behavior of different numerical schemes when 4000 orbital periods
are computed. This is the same number of orbits as in the examples for the Runge-Kutta
algorithm (see plots in 8.1). It shows that in all cases the error depend strongly on the
applied algorithm. The plots labelled with H1, H2 and H3 were generated with so-called
Hermite schemes, where a higher number indicates higher accuracy (the number of iteration

104

CHAPTER 8. THE QUALITY OF THE NUMERICAL INTEGRATOR

steps increases from H1 to H3). The plots with the index c1 and c2 were produced with a new
method using Stumpff’s c-functions. A detailed description of the underlying computations
is given in [17].

Figure 8.14: Errors in the eccentricity in a moderately perturbed binary system for
methods with and without Stumpff functions. The plot was taken from [17] as
an example of the accuracy of other numerical integrators. The curve labelling
is same as in Figure 8.12.

By comparing these results with those obtained with the 8th-order Runge-Kutta algorithm
it shows, that for the highly eccentric orbits the errors of the Runge-Kutta scheme have
approximately the same order of magnitude (10−2−10−3) as the H1 scheme in Figures 8.13
and 8.14. Only in Figure 8.12 the results of the H1 approach are slightly better. For the
less eccentric orbits the errors of the Runge-Kutta scheme are smaller (10−5−10−6) and they
correspond more to those of the H2 or the c1 approach in Figures 8.13 and 8.14. Again, in
Figure 8.12 the errors for the H2 and c1 scheme are slightly smaller. In most plots of the
Runge-Kutta algorithm the errors increase constantly in time, which is also true for the plots
here, if the mean values of the errors are considered (except for c2 in Figure 8.12, where the
error does oscillate but not increase).

The comparison reveals, that the accuracy and stability of the 8th-order Runge-Kutta al-
gorithm is comparable to the performance of other numerical integrator schemes used for
astrophysical calculations. An advantage of the Runge-Kutta algorithm might be, that only
the current acceleration (e.g. the current forces acting on the spacecraft) need to be evaluated.
For the Hermite approach, for instance, also the time derivative of the current acceleration
is required, being sometimes difficult to compute. Hence, the accuracy, stability and also the
uncomplicated implementation justify the use of the 8th-order Runge-Kutta algorithm for the
computation of spacecraft trajectories.

Having discussed and compared the accuracy of the numerical algorithm in this chapter,
the presentation and validation of the unified approach to the computation of spacecraft
trajectories is completed. The following chapter draws some conclusions and summarizes the
advantages of the unified formulation. Furthermore some proposals for enhancements of the
software tool are discussed and an overview of possible future applications is given.

105

Chapter 9

Conclusions

9.1 Major results

This diploma thesis demonstrated the feasibility of a unified approach to the computation
of orbit, re-entry and launch trajectories. Numerous examples have been provided illustrat-
ing that a unified physical and algorithmic treatment of all flight phases is possible. The
proposed approach can be applied to and possibly improve a wide range of mission analysis
computations, such as studies concerning

• the orbiting phase and long term orbit propagation of satellites,

• the atmospheric arc and pure re-entry trajectories,

• mission analysis for re-entry vehicles combining orbiting and re-entry phase, or

• launch trajectories.

In all these cases the unified approach offers many potential advantages:

• The set of differential equations covers all types of orbits, even equatorial and highly
eccentric orbits, whereas an unmodified classical formulation can only be applied to
non-equatorial orbits.

• For the computation of trajectories that consist of an orbiting and a re-entry phase a
change of reference frame is no longer required as all flight phases are described by the
presented unified approach.

• The six variables of motion allow for a better understanding of the orbit, the position and
the motion of the spacecraft. They refer directly to the actual position of the spacecraft
as it is seen from an observer on the ground, whereas the six classical orbital elements
are less intuitive and require a change of reference frame for their interpretation.

• Flight maneuvers needed for a controlled re-entry of a spacecraft can be planned long
in advance. This is important in order to reach a specific entry interface and the correct
flight envelope.

• The most important physical orbit perturbations can be implemented easily. The at-
mospheric lift and drag as well as the thrust are inherent in the equations.

106

CHAPTER 9. CONCLUSIONS

9.2 Possible enhancements of the software tool

Although the results are plausible, the presented computer program could be enhanced by
implementing the following features:

• Since the empirical atmosphere models will become more and more accurate and reliable,
the accuracy of long-term predictions could be improved by implementing the latest
versions of these models.

• For long-term orbit propagations additional physical forces (e.g. third body perturba-
tions as mentioned in chapter 4) could be considered.

• Other perturbations (e.g. exospheric winds) could be taken into account.

• The spherical shape of the Earth could be replaced by an oblate geoid.

9.3 Future work

On the basis of the presented physical approach various future applications and developments
can be considered. These might include the following:

• The code could be extended to a so-called 6-degree-of-freedom tool enabling three di-
mensional in-flight maneuvers for controlled, navigated and guided trajectories and
re-entries.

• Presently most optimization procedures for trajectories are based on formulations as-
suming an inertial and therefore non-rotating reference frame (e.g. [23] and [24]).
However, some optimization methods (e.g. Pontryagin’s Maximum Principle) should
also be applicable to the presented formulation. Consequently, the application of those
methods could be investigated in order to optimize launch and re-entry trajectories
under different constraints.

• The software tool could be used for planning interplanetary missions. Models for the
gravitational fields and atmospheres of other planets could be included. In this case
the program could be adapted to the simulation of missions to those planets, eventually
including aerobraking and aerocapture maneuvers. These maneuvers use the atmo-
spheric friction to bring a spacecraft from an interplanetary trajectory to a specified
orbit around a planet.

The unified physical and algorithmic formulation and the implemented software program
might just be the first step in a new direction of the development of mission analysis tools,
as both combine a wide range of advantages with a solid basis for possible future activities
and applications.

107

Acknowledgments

I would like to thank Professor Dr. Rainer Spurzem for giving me the unique opportunity to
carry out this diploma thesis at the Astronomisches Rechen-Institut (ARI) in Heidelberg in
cooperation with the European Space Agency (ESA). Since I am still dreaming of flying to
space myself I am very grateful for having had this chance.

I would like to extend my thanks to Mr Marco Caporicci, Head of Human Transportation
and Re-entry Systems Division at the European Space Research and Technology Center (ES-
TEC), for giving me the chance to work on the topic of trajectory computations within his
division.

I wish to express my sincere gratitude to Mr Rafael Molina, Head of Aerodynamics and
Aerothermodynamics Unit, who encouraged me in writing this diploma thesis during my stay
at ESTEC. I frequently benefited from fruitful discussions with him concerning the content
and the style of this work.

Furthermore, I would like to thank Dr. Andreas Just (ARI) for his precious comments and
suggestions helping me write, describe and interpret more precisely.

Special thanks goes to Mr Mike Steinkopf, Head of Avionics and Operational Section (ES-
TEC), and Mr Olivier Bayle (ESTEC) for providing data used for the validation of the
software tool.

Last but not least I want to thank Ms Jody Kirchner, Mr Daniel Heck and Mr Niels Rumpf
who helped significantly improve the style of this diploma thesis.

I am most grateful to all the above!

Sascha P. Quanz

108

Appendix A

References

[1] Balmino, G. (1980):
“Le Movement Elliptique Pertubé” in ”Le Movement du Véhicule Spatial en Orbite”

[2] Escobal, P.R. (1965):
“Methods of Orbit Determination”

[3] Nguyen X. Vinh, Adolf Busemann, Robert D. Culp (1980):
“Hyersonic and Planetary Entry Flight Mechanics”

[4] M. Crouzeix, A.L. Mignot:
“Analyse numérique des équations différentielles”

[5] http://www.first.gmd.de/persons/tj/diss/node64.html

[6] http://nssdc.gsfc.nasa.gov/space/model/atmos/nrlmsise00.html

[7] P. Fortescue, J. Stark (Editors):
“Spacecraft systems engineering (second edition)”

[8] CNES, Cepaduès (1995):
“Spaceflight Dynamics Part II”

[9] http://www.heavens-above.com/ssorbitdecay.asp?

[10] J.L. Lean, J.M. Picone, A. Hedin, S. Knowles, G. Moore:
“Validating NRLMSIS Using Atmospheric Densities derived from
Spacecraft Drag: Starshine Example”

[11] James R. Wertz, Wiley J. Larson (Editors):
“Space Mission Analysis and Design (third edition)”

[12] D. Marty (1986):
“Conception des véhicules spatiaux”

109

APPENDIX A. REFERENCES

[13] http://www.heavens-above.com/ss2-orbitdecayplot.asp

[14] Oliver Montenbruck, Eberhard Gill:
“Satellite Orbits - Models, Methods and Applications”
(Springer Verlag 2001)

[15] Starsem (The Soyuz Company):
“Soyuz User’s Manual (Issue No.3 April 2001)”

[16] Arianespace:
“Ariane 4 User’s Manual (Issue No.2 Feb. 1999)”

[17] Seppo Mikkola, Sverre J. Aarseth:
“An efficient integration method for binaries in N-body simulations”
(New Astronomy 3 (1998) 309-320)

[18] http://artemmis.univ-mrs.fr/cybermeca/Formcont/mecaspa/PROJETS/LANCEUR/

[19] TSNIIMASH:
“Integrated Software Packages for Soyuz TM, Progress M Reentry Computations”
(Work under ESA contract No. 10935/94/F/BM)

[20] EADS Launch Vehicles:
“Launch of the Soyuz-TMA Spacecraft from French Guiana”
(Ref. No.: LR5 043486)

[21] E. Messerschmid, S. Fasoulas:
“Raumfahrtsysteme”
(Springer Verlag 2001)

[22] http://www.astronautix.com/lvs/index.htm

[23] Anthony J. Calise, Nahum Melamed, Seungjae Lee:
“Design and Evaluation of a Three-Dimensional Optimal Ascent Guidance Algorithm”
(Journal of Guidance, Control and Dynamics; Vol.21, No.6, Nov/Dec 1998)

[24] O. von Stryk, R. Burlisch
“Direct and Indirect Methods for Trajectory Optimization”
(Annals of Operations Research 37(1992)357-373)

[25] Wilbur L. Hankey
“Re-Entry Aerodynamics”
(AIAA Education Series 1988)

[26] http://azinet.com/starshine/index.html

110

APPENDIX A. REFERENCES

[27] Aarseth, S.J.
“Gravitational N-Body Simulations: Tools and Algorithms”
(Cambridge Monographs on Mathematical Physics, Cambridge University Press;
England, Nov. 2003)

111

Appendix B

Nomenclature

~A aerodynamic force
a semi-major axis
~a acceleration
α angle of attack
b semi-minor axis
c distance from the center of an ellipse to one focus
c specific gas constant
CA aerodynamic coefficient related to the axial force
CD drag coefficient
CE center of the Earth
Cg center of gravity of the spacecraft
CL lift coefficient
CN aerodynamic coefficient related to the normal force
CS aerodynamic coefficient related to the side force
Cnm sectoral harmonic coefficients of the Earth
χ azimuth of the relative velocity
χ0 initial azimuth of the relative velocity
~D drag force
E total energy
e eccentricity
~e Runge-Lenz vector
~ei unit vector pointing in i-direction
~FG gravitational force
~FN normal force (perpendicular to the velocity vector)
~FT tangential force (aligned with velocity vector)
g(r) Earth acceleration
g0 Earth acceleration on ground level
gload,N acceleration in normal direction in units of the Earth acceleration
gload,T acceleration in tangential direction in units of the Earth acceleration
γ flight path angle
γ0 initial flight path angle

112

APPENDIX B. NOMENCLATURE

γG gravitational constant
γdeo flight path angle at entry interface
i inclination of the orbit relative to the Earth
Jn zonal harmonic coefficients of the Earth
κ ratio of specific heat coefficients cP /cV

L geographic latitude
L0 initial geographic latitude
Ldeo latitude at entry interface
l geographic longitude
l0 initial geographic longitude
ldeo longitude at entry interface
~L lift force
M mean anomaly
M Mach number
m mass
mea mass of the Earth
~M angular momentum
~Mr reduced angular momentum
µ bank angle
µ viscosity of a fluid
µea gravitational parameter of the Earth
n mean motion
Ω right ascension of the ascending node
ω argument of perigee
ω angle between ∆V and V during de-orbit burn
~Ω angular velocity of the Earth
~Ω′ angular velocity of the spacecraft centered coordinate system
p pressure
Pnm Legendre polynomials
ψ heading
Rea Earth radius
r altitude above the Earth surface/absolut value of radius vector
r0 initial altitude above the Earth surface
rapo apoapsis/apogee
rdeo altitude at entry interface
rperi periapsis/perigee
~r radius vector/position vector
ρ air density
ρ0 air density at ground level
S reference surface
Snm tesseral harmonic coefficients of the Earth
t time
~T thrust vector
Ts specific impulse of a rocket engine
Θ absolute temperature

113

APPENDIX B. NOMENCLATURE

ϑL local pitch angle (related to the spacecraft)
ϑI Galilean pitch angle (related to the launch pad)
U gravitational potential
~V velocity vector (relative to Earth)
V0 initial relative velocity
Vs speed of sound
V apo

abs absolute velocity at apogee
V peri

abs absolute velocity at perigee
X horizontal distance from launch pad
ẏ time derivative of the variable y
〈Z〉 mean value of the variable Z

114

Appendix C

Acronyms and Reference Frames

LEO Low Earth Orbit
ISS International Space Station
FPA Flight Path Angle
AoA Angle of Attack
DOY Day of Year
UT Universal Time
GLAT Geographic Latitude
GLONG Geographic Longitude
STL Local Apparent Solar Time
AF107 81-day Average of 10.7 cm Solar Flux
F107 Daily Value of 10.7 cm Solar Flux
AP Daily Value of Magnetic Index

(X-Y -Z) planet centered fixed coordinate system
(I-J-K) planet centered rotating coordinate system
(i-j-k) spacecraft centered coordinate system

linked to the radius vector
(i′-j′-k′) spacecraft center coordinate system

linked to the velocity vector
(x-y-z) spacecraft centered coordinate system

linked to the spacecraft body axes

115

Appendix D

The Source Code

In the following the source code and examples of the input files described in chapter 5 are
given. The source code consists of a main program and numerous important functions. Both
is shown in the following. Concerning the data bases containing the values of the solar flux
and the magnetic index of the last decades for the NRLMSISE-00 atmosphere model, only an
example of the required format will be given.

D.1 The main program

/*--*/
/* THIS FILE CONTAINS THE MAIN PROGRAM FOR CALCULATING ORBIT */
/* PROPAGATION AND TRAJECTORIES */
/*--*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
#include "nrlmsise-00.h"
#include "functions.h"

/*--*/
/* ------------------- BEGIN OF MAIN ------------------------ */
/*--*/

int main() {
extern int ap[54][366];
/*arrays for magnetic index*/

extern const double flux[54][366];
/*arrays for solar flux*/

double a[9][9],b[9];
/*array for Runge-Kutta coefficients*/

116

APPENDIX D. THE SOURCE CODE

double kr[9],kgamma[9],kL[9],kl[9],kchi[9],kV[9];
/*coefficients for variables of motion in Runge Kutta*/

double r[2],L[2],chi[2],V[2],gamma[2],l[2];
/*fields for manipulation of the main variables*/

double XX[2];
/*horizontal distance from liftoff for Runge-Kutta*/

double kXX[9],dXX,ddXX;
/*changes in the horizontal distance*/

double rho,rho0,my;
/*air density,air density at ground level,bank angle*/

double omega,apogee,perigee,v_abs;
/*angular velocity Earth,Apogee,Perigee,absolute velocity*/

double AF107,F107;
/*10.7cm flux 81day average and daily value*/

float SOLARTIME;
/*apparent local solar time*/

double S,Cd,Cl,m;
/*surface,drag coefficient,lift coefficient,mass*/

int Cd_flag, Cl_flag;
/*flags for defining input file for aerodynamic coefficients*/

double radius,g,printflag;
/*radius of the Earth,gravitational constant,printflag*/

int printflag2;
/*printflag 2: see physical_model_input.txt*/

double UT,time,t,PI;
/*Universal time, elapsed time, integrating time step, pi*/

double dr,dV,dgamma,dL,dl,dchi,ddr,ddV,ddl;
double ddL,ddgamma,ddchi;
/*changes in the variables*/

int i,j,q,s,AP,orbitcounter;
/*counters,magnetic index*/

117

APPENDIX D. THE SOURCE CODE

int DOY,YEAR,maxDOY;
/*actual day of year,actual year,days within actual year*/

int atmos_flag,gravi_flag;
/*atmospheric model flag and gravitational field flag*/

int latitude_flag;
/*latitude flag: see orbit_input.txt*/

double deorbit_V,inclination;
/*delta V for deorbit burn and inclination of orbit*/

int deorbit_flag, burn_indicator;
/*indicators for the deorbit burn*/

double nrlmsise_correction_factor = 0.85;
/*correction factor for density provided by NRLMSISE00*/

int direction_flag;
/*direction flag: see orbit_input.txt*/

int answer;
/*specifies the input file*/

float dummy;
/*just a dummy variable*/

double gravi_constant;
/*gravitational constant times mass of the Earth*/

int stop_type_flag;
/*flag to identify type of the loop limit*/

float loop_limit;
/*contains the limit for the loop (e.g. maximum time)*/

double F_N, F_T, T, alpha;
/*Normal force,tangential force,thrust,angle of attack*/

double temperature, theta_L, theta;
/*absolute temperature and pitch angles*/

double lift_off;
/*lift off time in sec after ignition*/

double speed_of_sound, mach;
/*speed of sound and mach number*/

118

APPENDIX D. THE SOURCE CODE

double g0, g_load_N, g_load_T;
/*Earth acceleration, tangential and normal g-loads*/

double Cd_AoA_array[30], Cd_MACH_array[30], Cd_array[30][30];
/*arrays containing the values for the angle of attack, */
/*for the mach number and those for Cd. Needed to read */
/*from Cd_input if required */

int Cd_amount_of_MACH, Cd_amount_of_AoA;
/*amount of mach numbers and angle of attacks */
/*specified in Cd_input */

double Cl_AoA_array[30], Cl_MACH_array[30], Cl_array[30][30];
int Cl_amount_of_MACH, Cl_amount_of_AoA;
/*see above! */

int pitch_flag, amount_of_pitches;
/*flag indicates whether local pitch or Galilean pitch */
/*amount refers to amount of interpolation functions */
/*for the pitch law */

double pitch_array[30][4];
/*contains start and stop time and initial and end value */
/* of pitch for every interpolation function for the */
/*pitch law */

/*--*/
/*--*/

/*coefficients for 8th-order Runge Kutta*/
a[1][1]=0.; a[2][2]=0.; a[3][3]=0.; a[4][4]=0.;
a[5][5]=0.; a[6][6]=0.; a[7][7]=0.; a[8][8]=0.;
a[2][1]=1./6.; a[3][1]=4./75.; a[3][2]=16./75.;
a[4][1]=5./6.; a[4][2]=-8./3.; a[4][3]=5./2.;
a[5][1]=-8./5.; a[5][2]=144./25.;
a[5][3]=-4.; a[5][4]=16./25.; a[6][1]=361./320.;
a[6][2]=-18./5.; a[6][3]=407./128.; a[6][4]=-11./80.;
a[6][5]=55./128.;a[7][1]=-11./640.; a[7][2]=0.;
a[7][3]=11./256.;a[7][4]=-11./160.; a[7][5]=11./256.;
a[7][6]=0.; a[8][1]=93./640.; a[8][2]=-18./5.;
a[8][3]=803./256.; a[8][4]=-11./160.; a[8][5]=99./256.;
a[8][6]=0.;a[8][7]=1.;

b[1]=7./1408.; b[2]=0.; b[3]=1125./2816.; b[4]=9./32.;
b[5]=125./768.; b[6]=0; b[7]=5./66.; b[8]=5./66.;

119

APPENDIX D. THE SOURCE CODE

/*--*/
/* The File-handles */
/*--*/

FILE* output_total;
FILE* output_total2; //*file-handles for writing output*/
FILE* output_total3;

FILE* input; //*file-handle for reading input */
FILE* spacecraft_input;
FILE* physical_model_input;
FILE* stop_condition_input;

FILE* Cd_input;
FILE* Cl_input;
FILE* pitch_input;

/*--*/
/* chose and check the input file */
/*--*/

do
{

printf("\nWhich input file shall be considered:\n");
printf("\n1: orbit_input.txt: You specified an orbit");
printf("\n2: manual_input.txt: You specified the initial conditions");
printf("\n3: launch_input.txt: You specified a launch configuration");
printf("\n0: abort program\n");
printf("\nPlease type the number of the desired input file: ");
scanf("%i",&answer);

}while (answer != 1 && answer !=2 && answer !=3 && answer != 0);

if (answer == 0)
{

exit(0);
};
if (answer == 1)
{

input = fopen ("orbit_input.txt","r");
};
if (answer == 2)
{

input = fopen ("manual_input.txt","r");
};
if (answer == 3)
{

input = fopen ("launch_input.txt","r");
};

120

APPENDIX D. THE SOURCE CODE

/*check whether input file is valid; if not: error message!*/

if (input == 0)
{
printf("\nThe desired input file does not exist!

Please create input file and try again!\n");
exit(0);
};

/*count the number of entries in the input file.*/

i=0;
if (answer != 3)
{
while (fscanf(input,"%f",&dummy)==1)

{
i++;
};

};

/*check whether input file contains right amount of parameters!*/

if ((answer == 1 && i!=7) || (answer ==2 && i!=7))
{
printf("Please check the input file! \n");
printf("It does not contain the right amount of parameters!\n");
exit(0);
};

/*open input files containing spacecraft parameters and */
/*physical model */

spacecraft_input = fopen ("spacecraft_input.txt","r");
physical_model_input = fopen ("physical_model_input.txt","r");
stop_condition_input = fopen ("stop_condition_input.txt","r");

if (spacecraft_input == 0)
{

printf("The file spacecraft_input.txt could not be found!
This file is needed for the execution of the program!\n");

exit(0);
};
if (physical_model_input == 0)

{
printf("The file physical_model_input.txt could not be found!

This file is needed for the execution of the program!\n");

121

APPENDIX D. THE SOURCE CODE

exit(0);
};
if (stop_condition_input == 0)

{
printf("The file stop_condition_input.txt could not be found!

This file is needed for the execution of the program!\n");
exit(0);

};

/*--*/

/*count the number of entries in the spacecraft input file.*/

i=0;
while (fscanf(spacecraft_input,"%f",&dummy)==1)

{
i++;
};

/*check whether input file contains right amount of parameters!*/

if (i!=8)
{
printf("Please check the input file spacecraft_input.txt! \n");
printf("It does not contain the right amount of parameters!\n");
exit(0);
};

/*count the number of entries in the physical model input file.*/

i=0;
while (fscanf(physical_model_input,"%f",&dummy)==1)

{
i++;
};

/*check whether input file contains right amount of parameters!*/

if (i!=10)
{
printf("Please check the input file physical_model_input.txt! \n");
printf("It does not contain the right amount of parameters!\n");
exit(0);
};

122

APPENDIX D. THE SOURCE CODE

/*count the number of entries in the stop condition input file.*/

i=0;
while (fscanf(stop_condition_input,"%f",&dummy)==1)

{
i++;
};

/*check whether input file contains right amount of parameters!*/

if (i!=2)
{
printf("Please check the input file stop_condition_input.txt! \n");
printf("It does not contain the right amount of parameters!\n");
exit(0);
};

/*--*/
/* rewind all the input files! */
/*--*/

rewind (spacecraft_input);
rewind (physical_model_input);
rewind (stop_condition_input);
if (answer != 3)

rewind (input);

/*--*/
/* initialization of variables */
/*--*/

PI=acos(-1);
rho0=1.225; /*air desity at ground level [kg/m^3]*/

/*--*/
/* READ PHYSICAL MODEL PARAMETERS */
/*--- */

fscanf(physical_model_input,"%lf",&radius);
/*read Earth radius from input file*/
fscanf(physical_model_input,"%lf",&omega);
/*read Angular Velocity from input file*/
fscanf(physical_model_input,"%lf",&gravi_constant);
/*read gravitational constant times earth mass from input file*/
fscanf(physical_model_input,"%lf",&UT);
/*read UT from input file*/
fscanf(physical_model_input,"%i",&DOY);

123

APPENDIX D. THE SOURCE CODE

/*read DOY from input file*/
fscanf(physical_model_input,"%i",&YEAR);
/*read YEAR from input file*/
fscanf(physical_model_input,"%i",&atmos_flag);
/*read atmospheric flag from input*/

fscanf(physical_model_input,"%i",&gravi_flag);
/*read gravitational field flag from input*/

fscanf(physical_model_input,"%lf",&t);
/*read integration timestep*/

fscanf(physical_model_input,"%i",&printflag2);
/*read printflag2*/

fclose(physical_model_input);

g0=gravi_constant/(radius*radius);
/*Earth acceleration [m/s^2]*/

/*--*/
/* READ SPACECERAFT PARAMETERS */
/*--*/

fscanf(spacecraft_input,"%lf",&m);
/*read mass from input file*/
fscanf(spacecraft_input,"%lf",&S);
/*read reference area from input*/
fscanf(spacecraft_input,"%i",&Cl_flag);
/*read Cl_flag from input file*/
fscanf(spacecraft_input,"%lf",&Cl);
/*read Cl from input file*/
fscanf(spacecraft_input,"%i",&Cd_flag);
/*read Cl_flag from input file*/
fscanf(spacecraft_input,"%lf",&Cd);
/*read Cd from input file*/
fscanf(spacecraft_input,"%lf",&my);
/*read bank angle from input file*/
fscanf(spacecraft_input,"%lf",&alpha);
/*read angle of attack from input file*/

my=my/180.*PI;
alpha=alpha/180.*PI;

fclose(spacecraft_input);

124

APPENDIX D. THE SOURCE CODE

/*--*/
/* If aerodynamic coefficients depend on MACH and AoA read */
/* data from extra input file */
/*--*/

/*1.) for the drag coefficient: */

if (Cd_flag == 1)
{

Cd_input = fopen("Cd_input.txt","r");
if (Cd_input == 0)
{

printf("The file ’Cd_input.txt’ could not be found!
This file is needed for the execution of the program!\n");
exit(0);

};

fscanf(Cd_input,"%i",&Cd_amount_of_MACH);
fscanf(Cd_input,"%i",&Cd_amount_of_AoA);

/*read the different MACH numbers provided in input file*/

for (i=0;i<Cd_amount_of_MACH;i++)
{

fscanf(Cd_input,"%lf",&Cd_MACH_array[i]);
};

/*read the different angle of attack provided in input file*/

for (i=0;i<Cd_amount_of_AoA;i++)
{

fscanf(Cd_input,"%lf",&Cd_AoA_array[i]);
};

/*read the different Cd values provided in input file into */
/* MACH-AoA matrix */

for (i=0;i<Cd_amount_of_MACH;i++)
{

for (j=0;j<Cd_amount_of_AoA;j++)
{

fscanf(Cd_input,"%lf",&Cd_array[i][j]);
};

};
fclose(Cd_input);

};

125

APPENDIX D. THE SOURCE CODE

/*--*/

/*2.) for the lift coefficient: */
if (Cl_flag == 1)
{

Cl_input = fopen("Cl_input.txt","r");
if (Cl_input == 0)
{

printf("The file ’Cl_input.txt’ could not be found!
This file is needed for the execution of the program!\n");
exit(0);

};

fscanf(Cl_input,"%i",&Cl_amount_of_MACH);
fscanf(Cl_input,"%i",&Cl_amount_of_AoA);

/*read the different MACH numbers provided in input file*/

for (i=0;i<Cl_amount_of_MACH;i++)
{

fscanf(Cl_input,"%lf",&Cl_MACH_array[i]);
};

/*read the different angle of attack provided in input file*/

for (i=0;i<Cl_amount_of_AoA;i++)
{

fscanf(Cl_input,"%lf",&Cl_AoA_array[i]);
};

/*read the different Cl values provided in input file into */
/*MACH-AoA matrix */

for (i=0;i<Cl_amount_of_MACH;i++)
{

for (j=0;j<Cl_amount_of_AoA;j++)
{

fscanf(Cl_input,"%lf",&Cl_array[i][j]);
};

};
fclose(Cl_input);

};

126

APPENDIX D. THE SOURCE CODE

/*--*/
/* READ STOP CONDITION */
/*--- */

fscanf(stop_condition_input,"%i",&stop_type_flag);
/*read stop type flag from input file*/
fscanf(stop_condition_input,"%f",&loop_limit);
/*read limit of the main loop area from input*/

fclose(stop_condition_input);

/*--*/
/* READING AND COMPUTATION OF THE INITIAL CONDITIONS */
/*--*/

/*--*/
/*a) Manual input*/
/*--*/

if(answer == 2)
{

fscanf(input,"%lf",&r[0]);
fscanf(input,"%lf",&V[0]);
fscanf(input,"%lf",&gamma[0]);
fscanf(input,"%lf",&chi[0]);
fscanf(input,"%lf",&L[0]);
fscanf(input,"%lf",&l[0]);
fscanf(input,"%i",&burn_indicator);
r[0] = r[0] * 1000 + radius;
gamma[0]=gamma[0]/180.*PI;
l[0]=l[0]/180.*PI;
L[0]=L[0]/180.*PI;
chi[0]=chi[0]/180.*PI;

fclose(input);
};

/*--*/
/*b) Orbit input*/
/*--*/

if(answer == 1)
{

fscanf(input,"%lf",&apogee);
fscanf(input,"%lf",&perigee);
fscanf(input,"%lf",&l[0]);
fscanf(input,"%lf",&inclination);
fscanf(input,"%i",&latitude_flag);

127

APPENDIX D. THE SOURCE CODE

fscanf(input,"%i",&direction_flag);
fscanf(input,"%i",&burn_indicator);

apogee = apogee * 1000 + radius;
perigee = perigee * 1000 + radius;
l[0]=l[0]/180.*PI;
gamma[0]=0.;

fclose(input);

/*--*/

/*Calculate initial velocity and azimuth depending on input */

if((latitude_flag == 1) && (direction_flag == 1))
/*start perigee minimum latitude going east*/

{
L[0]=-inclination/180.*PI;
chi[0]=90./180.*PI;
r[0]=perigee;
v_abs = sqrt(gravi_constant/r[0])*sqrt(2*apogee/(apogee+r[0]));
V[0] = v_abs - (omega*r[0])*cos(L[0]);

};
if((latitude_flag == 1) && (direction_flag == 2))

/*start perigee minimum latitude going west*/
{

L[0]=-inclination/180.*PI;
chi[0]=270./180.*PI;
r[0]=perigee;
v_abs = sqrt(gravi_constant/r[0])*sqrt(2*apogee/(apogee+r[0]));
V[0] = v_abs + (omega*r[0])*cos(L[0]);

};
if((latitude_flag == 2) && (direction_flag == 1))

/*start perigee maximum latitude going east*/
{

L[0]=inclination/180.*PI;
chi[0]=90./180.*PI;
r[0]=perigee;
v_abs = sqrt(gravi_constant/r[0])*sqrt(2*apogee/(apogee+r[0]));
V[0] = v_abs - (omega*r[0])*cos(L[0]);

};
if((latitude_flag == 2) && (direction_flag == 2))

/*start perigee maximum latitude going west*/
{

L[0]=inclination/180.*PI;
chi[0]=270./180.*PI;
r[0]=perigee;

128

APPENDIX D. THE SOURCE CODE

v_abs = sqrt(gravi_constant/r[0])*sqrt(2*apogee/(apogee+r[0]));
V[0] = v_abs + (omega*r[0])*cos(L[0]);

};

/*--*/

if((latitude_flag == 3) && (direction_flag == 1))
/*start apogee minimum latitude going east*/

{
L[0]=-inclination/180.*PI;
chi[0]=90./180.*PI;
r[0]=apogee;
v_abs = sqrt(gravi_constant/r[0])*sqrt(2*perigee/(perigee+r[0]));
V[0] = v_abs - (omega*apogee)*cos(L[0]);

};
if((latitude_flag == 3) && (direction_flag == 2))

/*start apogee minimum latitude going west*/
{

L[0]=-inclination/180.*PI;
chi[0]=270./180.*PI;
r[0]=apogee;
v_abs = sqrt(gravi_constant/r[0])*sqrt(2*perigee/(perigee+r[0]));
V[0] = v_abs + (omega*apogee)*cos(L[0]);

};
if((latitude_flag == 4) && (direction_flag == 1))

/*start apogee maximum latitude going east*/
{

L[0]=inclination/180.*PI;
chi[0]=90./180.*PI;
r[0]=apogee;
v_abs = sqrt(gravi_constant/r[0])*sqrt(2*perigee/(perigee+r[0]));
V[0] = v_abs - (omega*apogee)*cos(L[0]);

};
if((latitude_flag == 4) && (direction_flag == 2))

/*start apogee maximum latitude going west*/
{

L[0]=inclination/180.*PI;
chi[0]=270./180.*PI;
r[0]=apogee;
v_abs = sqrt(gravi_constant/r[0])*sqrt(2*perigee/(perigee+r[0]));
V[0] = v_abs + (omega*apogee)*cos(L[0]);

};
};

129

APPENDIX D. THE SOURCE CODE

/*--*/
/*c) Launch Input: only read latitude, longitude, desired */
/* inclination and lift-off time the rest is read by launch*/
/* function! */
/*--*/

if (answer == 3)
{

fscanf(input,"%lf",&L[0]);
fscanf(input,"%lf",&l[0]);
fscanf(input,"%lf",&chi[0]);
fscanf(input,"%lf",&lift_off);
XX[0]=0.;

/*set horizontal distance to zero*/
L[0]=L[0]*PI/180.;
l[0]=l[0]*PI/180.;
V[0]=0.01;
r[0]=radius;
gamma[0]=PI/2.;
chi[0]=chi[0]*PI/180.;

fclose(input);
};

/*--*/
/*In case of launch trajectory read also the pitch-law from */
/* input file! */
/*--*/

if (answer == 3)
{

pitch_input = fopen("pitch_input.txt","r");
if (pitch_input == 0)
{

printf("The file ’pitch_input.txt’ could not be found!
This file is needed for the execution of the program!\n");
exit(0);

};

fscanf(pitch_input,"%i",&pitch_flag);
/* initial pitch = 0 */
/* local pitch = 1 */

fscanf(pitch_input,"%i",&amount_of_pitches);
/*how many equations are about to follow? */

for (i=0;i<amount_of_pitches;i++)
{

130

APPENDIX D. THE SOURCE CODE

for (j=0;j<4;j++)
fscanf(pitch_input,"%lf",&pitch_array[i][j]);

};

fclose(pitch_input);
};

/*--*/
/*calculation of actual solartime*/

SOLARTIME=UT/3600+l[0]/15;
/*--- */

/*--- */
/* END OF CALCULATING INITIAL CONDITIONS */
/*--*/

/*opening output files*/
output_total = fopen ("Results.txt","w");
output_total2 = fopen ("Results2.txt","w");
output_total3 = fopen ("Results3.txt","w");

/*--- */
/* Initial parameters are found */
/* the numerical integrator loop can start */
/*--- */

printf("\nInitial conditions are found!
\nStarting Trajectory computation!\n");

j=1;
time=orbitcounter=0;

/*write initial values in output file*/

fprintf(output_total,"%5i%5i%10.2f",YEAR,DOY,UT);
fprintf(output_total,"%15.2lf ",time);
fprintf(output_total,"%14.4f ",r[0]/1000-6378.13649);
fprintf(output_total,"%14.4f %8.4f ",V[0],gamma[0]/PI*180);
fprintf(output_total,"%8.4f ",L[0]/PI*180);
fprintf(output_total,"%8.4f ",l[0]/PI*180);
fprintf(output_total,"%8.4f\n",chi[0]/PI*180);

131

APPENDIX D. THE SOURCE CODE

/*--- */
/* THE NUMERICAL INTEGRATOR LOOP of orbit propagation */
/*--- */

do
{

/*the following is only needed if NRLMSISE00 atmosphere model */
/* is chosen! */

if (atmos_flag == 2)
{

if (YEAR > 2013)

/*correction of the year for future missions with regard to */
/*the 11-year solar circle */

{
while (YEAR > 2013)

{
YEAR = YEAR - 11;
};

};

if (YEAR % 4 == 0)

/*calculation of the number of days of the actual year */

{
maxDOY = 366;
if (YEAR % 100 == 0 && YEAR % 400 != 0)

maxDOY = 365;
}
else

maxDOY = 365;

/*calculation of the 81-flux-average*/

if (YEAR==2013 && maxDOY-DOY<41)
{

AF107=flux[YEAR-1960][DOY-1];
for (s=1;s<=40;s++)

{
AF107=AF107+flux[YEAR-1960-11][DOY-1+s];

AF107=AF107+flux[YEAR-1960][DOY-1-s];
};

132

APPENDIX D. THE SOURCE CODE

AF107=AF107/81;
}
else
{

AF107=flux[YEAR-1960][DOY-1];
for (s=1;s<=40;s++)

{
AF107=AF107+flux[YEAR-1960][DOY-1+s];

AF107=AF107+flux[YEAR-1960][DOY-1-s];
};

AF107=AF107/81;
};

/*get value for the magnetic index*/
AP = ap[YEAR-1960][DOY-1];

/*get value for 10.7 solar flux*/
F107 = flux[YEAR-1960][DOY-2];

/*below 80km magnetic index and 10.7 solar flux need correction*/
if ((r[0]-radius)/1000<80)
{

F107=AF107=150.;
AP=4.;

};
};

/*--- */
/* the beginning of the mathematical scheme */
/*--- */

r[1]=r[0];
V[1]=V[0];
l[1]=l[0];
L[1]=L[0];
chi[1]=chi[0];
gamma[1]=gamma[0];
if (answer == 3.)

XX[1]=XX[0];

i=0;

time=j*t;

for (q=1;q<=8;q++)
{

/*select atmospheric model:*/

133

APPENDIX D. THE SOURCE CODE

/*no atmospheric*/
if (atmos_flag == 0)
{

rho = 0;
temperature = 0.;

};
/*analytical model*/

if (atmos_flag == 1)
{

if (r[1]<=6533195)
rho=rho0*exp((-900*(r[1]-6378135))/6378135);

else
rho=3.5e-12*exp(-(((r[1]-6378135)/1000)-380)/48);

temperature = get_temperature (r[1],radius);
};

/*NRLMSISE-00*/
if (atmos_flag == 2)
{

NRLMSISE(DOY,UT,(r[1]-radius)/1000,L[1],
l[1],SOLARTIME,AF107,F107,AP,&rho,&temperature);

rho=rho*1000.*nrlmsise_correction_factor;
};

/*calculation of Earth acceleration:*/
/* symmetrical field */

if (gravi_flag == 0)
g = gravi_constant/(r[1]*r[1]);

/*with J2 correction term*/

if (gravi_flag == 1)
g = g_factor(L[1],l[1],r[1]);

/*--*/

/*compute mach number/*

speed_of_sound=get_speed_of_sound(temperature);
mach=V[1]/speed_of_sound;

/*get Cd and Cl from input files if necessary*/

if (Cd_flag == 1)
Cd=get_Cd3(mach,alpha,Cd_AoA_array,Cd_MACH_array,

134

APPENDIX D. THE SOURCE CODE

Cd_array,Cd_amount_of_MACH,Cd_amount_of_AoA);
if (Cl_flag == 1)

Cl=get_Cl3(mach,alpha,Cl_AoA_array,Cl_MACH_array,
Cl_array,Cl_amount_of_MACH,Cl_amount_of_AoA);

if (answer == 3 && time < lift_off)
/*No changes whatsoever! Therefore go on */

{
get_thrust_mass(time,&T,&m);
F_N=0.;
F_T=0;
goto here;

};

if (answer == 3 && time >= lift_off)
{

/*compute pitch law!*/
theta = get_theta_L2(time, amount_of_pitches,pitch_array);

if (pitch_flag == 0)
/*galilean reference frame! transform to local reference frame*/

theta_L = theta*PI/180.+ XX[1]/radius + omega*(time-lift_off);
else

theta_L = theta*PI/180.;

/*compute thrust and mass*/
get_thrust_mass(time,&T,&m);

};

if (answer == 3)
{

/*the forces*/
F_N = T*sin(theta_L-gamma[1]) + 0.5*rho*S*Cl*V[1]*V[1];
F_T = T*cos(theta_L-gamma[1]) - 0.5*rho*S*Cd*V[1]*V[1];

}
else
{

F_N = T*sin(alpha) + 0.5*rho*S*Cl*V[1]*V[1];
F_T = T*cos(alpha) - 0.5*rho*S*Cd*V[1]*V[1];

};

/*the g-loads*/
g_load_N=F_N/m/g0;
g_load_T=F_T/m/g0;

135

APPENDIX D. THE SOURCE CODE

/*--- */
/*--- */

/*calculations of changes in six variables */
/*(the "real" runge kutta starts here!) */

dr = delta_r(V[1],gamma[1]);

dV = delta_V(V[1],gamma[1],chi[1],
r[1],L[1],g,m,omega,my,F_T);

dl = delta_l(V[1],gamma[1],chi[1],r[1],L[1]);

if (answer == 3 && theta == 90.)
dgamma=0;

else
dgamma = delta_gamma(V[1],gamma[1],chi[1],

r[1],L[1],g,F_N,m,omega,my);

dL = delta_L(V[1],gamma[1],chi[1],r[1]);

if (answer == 3 && abs(gamma[1]-PI/2.)<1e-12)
dchi = 0.;

else
dchi = delta_chi(V[1],gamma[1],chi[1],

r[1],L[1],g,m,omega,F_N,my);

kr[q] = t * dr;
kV[q] = t * dV;
kl[q] = t * dl;
kL[q] = t * dL;
kchi[q] = t * dchi;
kgamma[q] = t * dgamma;

if (answer == 3)
{

dXX = delta_X(radius,V[1],gamma[1],r[1]);
kXX[q] = t * dXX;

};

r[1]=r[0];
V[1]=V[0];
l[1]=l[0];
L[1]=L[0];
chi[1]=chi[0];

136

APPENDIX D. THE SOURCE CODE

gamma[1]=gamma[0];
if (answer == 3)

XX[1]=XX[0];

for (s=1;s<=q;s++)
{

r[1]=r[1] + kr[s] * a[q+1][s];
V[1]=V[1] + kV[s] * a[q+1][s];
l[1]=l[1] + kl[s] * a[q+1][s];
L[1]=L[1] + kL[s] * a[q+1][s];
chi[1]=chi[1] + kchi[s] * a[q+1][s];
gamma[1]=gamma[1] + kgamma[s] * a[q+1][s];
if (answer ==3)

XX[1]=XX[1] + kXX[s] * a[q+1][s];
};

};

ddXX=ddr=ddV=ddl=ddL=ddgamma=ddchi=0;

for (q=1;q<=8;q++)
{
ddV = ddV + kV[q] * b[q];
ddr = ddr + kr[q] * b[q];
ddl = ddl + kl[q] * b[q];
ddL = ddL + kL[q] * b[q];
ddchi = ddchi + kchi[q] * b[q];
ddgamma = ddgamma + kgamma[q] * b[q];
if (answer == 3)

ddXX = ddXX + kXX[q] * b[q];
};

/*new values after one integration step*/
r[1] = r[0] + ddr;
V[1] = V[0] + ddV;
l[1] = l[0] + ddl;
L[1] = L[0] + ddL;

chi[1] = chi[0] + ddchi;
gamma[1] = gamma[0] + ddgamma;
if (answer == 3)
{

XX[1] = XX[0] + ddXX;
XX[0]=XX[1];

};

r[0]=r[1];
V[0]=V[1];

137

APPENDIX D. THE SOURCE CODE

l[0]=l[1];
if (l[0]>=2*PI)

/*reset of longitude if >360*/
{
l[0]=l[0]-2*PI;
orbitcounter=orbitcounter+1;
};

if (answer != 3)
/*during launch we allow counting backwards */
/*else we want to have positive longitude */

{
if (l[0]<0)

{
l[0]=2*PI+l[0];
};

};
L[0]=L[1];
chi[0]=chi[1];
gamma[0]=gamma[1];

/*--- */
/* if de-orbit maneuver is to be calculated (burn_indicator=1) */
/* calculate the delta V that is needed check where one would */
/* end up if burn is initiated right now. If target can be */
/* reached (deorbit_flag=1): initiate de-orbit. */
/* If target cannot be reached: no burn, wait until next */
/* iteration step */
/*--*/

if (burn_indicator == 1)
{
deorbit_V = deorbit(radius,r[0],gamma[0]);

deorbit_flag = landspotpredict(r[0],V[0],gamma[0],
l[0],L[0],chi[0],deorbit_V,S,m,Cd,Cl,my,gravi_flag);

};

if (deorbit_flag == 1)
{
V[0]=V[0]-deorbit_V;
burn_indicator=0;
deorbit_flag=0;
printf("\nDe-orbit-burn initiated! Delta V:\t%f\n\n",deorbit_V);
};

/*--- */
/*--- */

138

APPENDIX D. THE SOURCE CODE

here:

/*update of parameters*/
UT=UT+t;
if (UT > 86400.)

{
UT = UT - 86400.;
DOY = DOY + 1;
};

if (DOY > maxDOY)
{
DOY = 1;
YEAR = YEAR + 1;
};

SOLARTIME=UT/3600+l[i]/15.;

/*chose how many results are written in output*/
printflag=j%printflag2;
if (printflag==0)

{
fprintf(output_total,"%5i%5i%10.2lf",YEAR,DOY,UT);
fprintf(output_total,"%15.2lf ",time);
fprintf(output_total,"%14.4lf ",r[0]/1000-6378.13649);
fprintf(output_total,"%14.4lf %8.4lf ",V[0],gamma[0]/PI*180);
fprintf(output_total,"%8.4lf ",L[0]/PI*180);
fprintf(output_total,"%8.4lf ",l[0]/PI*180);
fprintf(output_total,"%8.4lf \n",chi[0]/PI*180);

fprintf(output_total2,"%5i%5i%10.2lf ",YEAR,DOY,UT);
fprintf(output_total2,"%15.2lf ",time);
fprintf(output_total2,"% 4.4e ",rho);
fprintf(output_total2,"%8.4lf ",temperature);
fprintf(output_total2,"%6.3lf ",mach);
fprintf(output_total2,"%6.4lf ",Cd);
fprintf(output_total2,"%6.4lf \n",Cl);

fprintf(output_total3,"%5i%5i%10.2lf ",YEAR,DOY,UT);
fprintf(output_total3,"%15.2lf ",time);
fprintf(output_total3,"% 4.4e ",F_N);
fprintf(output_total3,"% 4.4e ",F_T);
fprintf(output_total3,"%6.4lf ",g_load_N);
fprintf(output_total3,"%6.4lf ",g_load_T);
fprintf(output_total3,"%14.3lf ",m);
fprintf(output_total3,"%14.3lf \n",T);
};

j++;

139

APPENDIX D. THE SOURCE CODE

/*--- */
/* end of loop depending on stop_condition_input*/

if (r[0]/1000-6378.13649 <= 0 && answer != 3)
{

printf("\nSpacecraft touched down!\n");
break;

};

if (stop_type_flag == 1 && r[0]/1000-6378.13649 <= loop_limit)
{

printf("\nDesired altitude is reached!\n");
break;

};

if (stop_type_flag == 2 && r[0]/1000-6378.13649 >= loop_limit)
{

printf("\nDesired altitude is reached!\n");
break;

};

if (stop_type_flag == 3 && orbitcounter == loop_limit)
{

printf("\nDesired amount of orbits was computed!\n");
break;

};

if (stop_type_flag == 4 && time >= loop_limit)
{

printf("\nDesired orbit period was computed!\n");
break;

};
}while(1<2);

/*--*/
/* END OF MAIN LOOP */
/*--- */
/* end of propagation loop, depending on chosen condition */
/*--- */

printf("Trajectory complete.\n\nElapsed Time: %f sec\n\n",time);
return 0;

}
/*--*/
/* ---------------- END OF MAIN PROGRAM ----------------------*/
/*--*/

140

APPENDIX D. THE SOURCE CODE

D.2 The functions

/*--- */
/* -------- FUNCTION FOR CALCULATING THE DELTA V------------- */
/* ----------- FOR THE DEORBIT BURN ---------- */
/* SO THAT THE SPECIFIED TAEM INTERFACE CAN BE REACHED */
/*--- */

/*parameter: Earth radius, actual altitude, actual FPA */

double deorbit(double radius, double r0, double gamma_s)
{

double my,omega,omega_prime,X,a,b,c,result;

double PI=acos(-1),v_abs,Omega;

double land_longi, land_lati , Latitude;

float re,gamma_e;

FILE* taem;

/*OPEN FILE AND READ ENTRY INTERFACE PARAMETERS*/

taem = fopen ("Deorbit.txt","r");

if (taem != 0)
{
fscanf(taem,"%f",&land_longi); /*INTERFACE LONGITUDE */
fscanf(taem,"%f",&land_lati); /*INTERFACE LATITUDE */
fscanf(taem,"%f",&re); /*INTERFACE ALTITUDE */
fscanf(taem,"%f",&gamma_e); /*INTERFACE FPA */
}

else
{
printf("File TAEM.txt not accessible !!!\n");
exit(1);
assert(0);
};

Latitude=land_lati*PI/180.;

re=re*1000.+radius;

gamma_e=gamma_e/180.*PI;

141

APPENDIX D. THE SOURCE CODE

/*absolute velocity of circular orbit */
v_abs = sqrt(3.9894065e14/r0);

/*gravitational parameter of the Earth*/
my=3.9894065e14;

omega=PI; /*angle between deorbit thrust and */
/*initial velocity */

omega_prime=0.; /*angle between initial velocity */
/*and velocity after burn */

Omega=7.27221e-5; /*Earth’s angular velocity */

/*--- */
/* Solving a quadratic equation for delta V */
/* (taken from CNES spaceflight dynamics part 2) */
/*--- */

X=(r0*r0)/(re*re*cos(gamma_e)*cos(gamma_e));

a=(X*(cos(omega_prime)*cos(omega_prime)
*sin(omega+gamma_s)*sin(omega+gamma_s)-1)+1);

b=2.*v_abs*cos(omega_prime)*(cos(omega)
-X*cos(gamma_s)*cos(omega+gamma_s));

c=2.*my*(1./re-1./r0)+v_abs*v_abs
*(1-X*cos(gamma_s)*cos(gamma_s));

result=(-b+sqrt(b*b-4.*a*c))/(2.*a);

fclose(taem);
return result;

}

142

APPENDIX D. THE SOURCE CODE

/*--- */
/*-------------------- NRLMSISE ------------------------- */
/*--------FUNCTION FOR NRLMSISE-00 ATMOSPHERE MODEL-----------*/
/* RETURNS THE DENSITY AND TEMPERATURE FOR A GIVEN TIME, */
/* A GIVEN ALTITUDE AND A GIVEN POSITION ABOVE THE SURFACE */
/* OF THE EARTH */
/*--- */

void NRLMSISE(int doy,float sec,double alt,double g_lat,
doubleg_long, double lst, double f107A,
double f107, int ap, double* rho, double* temperature)

{
struct nrlmsise_output output[17];
struct nrlmsise_input input[17];
struct nrlmsise_flags flags;
struct ap_array aph;
int i;

/* input values */
for (i=0;i<7;i++)

aph.a[i]=100;
flags.switches[0]=0;
for (i=1;i<24;i++)

flags.switches[i]=1;
for (i=0;i<1;i++) {

input[i].doy=doy; /*specified: Day Of Year */
input[i].year=0; /* Year */
input[i].sec=sec; /* UT of the day */
input[i].alt=alt; /* Altitude */
input[i].g_lat=g_lat; /* Latitude */
input[i].g_long=g_long; /* Longitude */
input[i].lst=lst; /* Local Solar Time*/
input[i].f107A=f107A; /* 10.7cm Average */
input[i].f107=f107; /* actual 10.7 cm */
input[i].ap=ap; /* actual AP index */

}

for (i=0;i<1;i++)
gtd7d(&input[i], &flags, &output[i]);

/* returns the atmospheric density */
*rho = output[0].d[5];

/*returns temperature */
*temperature = output[0].t[1];

}

143

APPENDIX D. THE SOURCE CODE

/*--- */
/* DIFFERENTIAL EQUATIONS DESCRIBING THE MOTION */
/* OF THE SPACECRAFT */
/*--- */

/*--- */
/* ------------ FUNCTION for CHANGES IN ALTITUDE ------------ */
/*--*/

double delta_r (double V_0, double gamma_0)
{
double dr;

dr = V_0*sin(gamma_0);
return dr;
}

/*--- */
/* ------------ FUNCTION for CHANGES IN LATITUDE ------------ */
/*--- */

double delta_L (double V_0, double gamma_0, double chi_0,
double r_0)

{
double dL;

dL = V_0/r_0*cos(gamma_0)*cos(chi_0) ;
return dL;
}

/*--- */
/* -------------- FUNCTION for CHANGES IN LONGITUDE---------- */
/*--- */

double delta_l (double V_0, double gamma_0, double chi_0,
double r_0, double L_0)

{
double dl;

dl = V_0/r_0*cos(gamma_0)*sin(chi_0)/cos(L_0);
return dl;
}

144

APPENDIX D. THE SOURCE CODE

/*--- */
/* ------------- FUNCTION for CHANGES IN VELOCITY------------ */
/*--- */

double delta_V (double V_0, double gamma_0, double chi_0,
double r_0, double L_0, double g, double m,
double omega, double my, double F_T)

{
double dV;

dV= -g*sin(gamma_0)+F_T/m+omega*omega*r_0*cos(L_0)
*(sin(gamma_0)*cos(L_0)-cos(gamma_0)*sin(L_0)*cos(chi_0));

return dV;
}

/*--- */
/* ----------------- FUNCTION for CHANGES IN FPA ------------ */
/*--- */

double delta_gamma (double V_0, double gamma_0, double chi_0,
double r_0, double L_0, double g, double F_N,
double m, double omega, double my)

{
double dgamma;
dgamma = -g/V_0*cos(gamma_0)+F_N/m*cos(my)/V_0+

V_0/r_0*cos(gamma_0)+2.*omega*cos(L_0)*sin(chi_0)+
1./V_0*omega*omega*r_0*cos(L_0)*(cos(gamma_0)*cos(L_0)

+sin(gamma_0)*sin(L_0)*cos(chi_0)) ;

return dgamma;
}

/*--*/
/*------------- FUNCTION for CHANGES IN AZIMUTH-------------- */
/*--- */

double delta_chi (double V_0, double gamma_0, double chi_0,
double r_0, double L_0, double g, double m,
double omega, double F_N, double my)

{
double dchi;
dchi = -F_N/m*sin(my)/V_0/cos(gamma_0)

+V_0/r_0*cos(gamma_0)*tan(L_0)*sin(chi_0)
+ 2.*omega*(sin(L_0)-tan(gamma_0)*cos(L_0)*cos(chi_0))
+omega*omega*r_0/V_0*sin(L_0)*cos(L_0)*sin(chi_0)/cos(gamma_0);

return dchi;
}

145

APPENDIX D. THE SOURCE CODE

/*--*/
/* correction of the gravitational potential */
/* due to oblateness of the Earth via J2 term */
/* -- */

double g_factor (double latitude, double longitude, double r_i)
{

double radius =6378136.49, my=3.9894065e14;

/*correction factors*/

double J2 = 1082.63e-6;
double C22 = 1.57e-6, S22 = -0.904e-6;
double P20 = 0.5*(3*cos(latitude)*cos(latitude)-1);
double P22 = 3*(1 - cos(latitude)*cos(latitude));

/*resulting Earth acceleration*/

double g;

g = my / (r_i*r_i) - 3*my*radius*radius / (r_i*r_i*r_i*r_i) *
(J2*P20 + P22*(C22*cos(2*longitude)+S22*sin(2*longitude)));

return g;
}

/* -- */
/* --------- FUNCTION for computation of temperature -------- */
/* ----------------- using an analytical model -------------- */
/* -- */

double get_temperature (double altitude, double radius)
{

double temperature;

/*convert to km above surface*/
altitude=(altitude-radius)/1000.;

if (altitude < 11.)
temperature = -6.3636*altitude + 287.;

if (altitude >= 11. && altitude < 15.)
temperature = -0.25 * altitude + 219.75;

if (altitude >= 15. && altitude < 25.)
temperature = 0.1*altitude + 214.5;

146

APPENDIX D. THE SOURCE CODE

if (altitude >= 25. && altitude < 48.)
temperature = 2.8261*altitude + 146.35;

if (altitude >= 48. && altitude < 50.)
temperature = 0.5*altitude + 258.;

if (altitude >= 50. && altitude < 53.)
temperature = -1./3.*altitude + 299.67;

if (altitude >= 53. && altitude < 80.)
temperature = -4.2963*altitude + 509.7;

if (altitude >= 80. && altitude < 85.)
temperature = -1.2*altitude + 262.;

if (altitude >= 85. && altitude < 97.)
temperature = 0.5*altitude + 117.5;

if (altitude >= 97. && altitude < 170.)
temperature = 8.6849*altitude - 676.44;

if (altitude >= 170. && altitude < 220.)
temperature = 2.8*altitude + 324.;

if (altitude >= 220. && altitude <= 500.)
temperature = 0.2143*altitude + 892.86;

if (altitude > 500.)
{

printf("\n Sorry!\n For the actual altitude,
there is no value for the temperature available!
\n Please use NRLMSISE-00 atmophere model!\n");

temperature = 0.;
exit(0);

}
return temperature;

}

147

APPENDIX D. THE SOURCE CODE

/*--*/
/*---------- FUNCTION for computation of speed of sound------ */
/*--- */

double get_speed_of_sound (double temperature)
{

double speed_of_sound;
/*Cp over Cv for air (specific heat coefficients*/

float kappa=1.4;

/*specific gas constant unit:[J/(mol*K)]*/
float gas_constant=8.31451;

/*constituents:N(78%),O2(21%),Ar(1%),unit[g]*/
float mol_mass=28.96;

speed_of_sound=sqrt(kappa*gas_constant*temperature/(mol_mass/1000.));
return speed_of_sound;

}

/*--*/
/*-------------------HELP FUNCTION slope -------------------- */
/*computes the slope for a linear approxim. between 2 points */
/*--- */

double get_slope (double x1, double x2, double y1, double y2)
{

double slope;
if (y1 >= y2)

slope=(y1-y2)/(x1-x2);
if (y1 < y2)

slope=(y2-y1)/(x2-x1);
return slope;

}

/*--- */
/* ----- FUNCTION for changes in horizontal distance ------ */
/* -- needed for launch, returns actual horizontal distance --*/
/* -- */

double delta_X (double radius, double V_0, double gamma_0,
double r_0)

{
double dXX;
dXX = radius*V_0*cos(gamma_0)/r_0;
return dXX;

}

148

APPENDIX D. THE SOURCE CODE

/*--- */
/* --- FUNCTION for computing the actual Thrust and Mass ---- */
/* ------------------- needed for launch! --------------------*/
/*--- */

get_thrust_mass (double time, double* thrust, double* mass)

{
int amount_of_stages;
int additional_mass_flag;
int i,j;
double dummy, payload_mass;

/*so far 11 parameters for each stage have been identified */
int items_per_stage=11;

/*so far 5 parameters for having additional mass items have */
/*been identified */

int items_per_additional_mass=5;

/*maximum of stages possible*/
int max_stages=10;

/*maximum of additional mass items possible*/
int max_additional_mass=10;

double launch_array1[max_stages][items_per_stage];
double launch_array2[max_additional_mass][items_per_additional_mass];
double PI=acos(-1);

FILE* launch_input;

launch_input = fopen("launch_input.txt","r");
if (launch_input == 0)
{

printf("The file ’launch_input.txt’ could not be found!
This file is needed for the execution of the program!\n");

exit(0);
};

/*Read variables that are not needed into dummy*/
for (i=0; i<4; i++)
{

fscanf(launch_input,"%f",&dummy);
};

149

APPENDIX D. THE SOURCE CODE

fscanf(launch_input,"%i",&amount_of_stages);
fscanf(launch_input,"%lf",&payload_mass);
fscanf(launch_input,"%i",&additional_mass_flag);

/*read the input from "launch_input.txt" */
/* a) Read input for each stage: */

for (i=0; i<amount_of_stages; i++)
{

/*number of engines*/
fscanf(launch_input,"%lf",&launch_array1[i][0]);

/*thrust per engine*/
fscanf(launch_input,"%lf",&launch_array1[i][1]);

/*thrust angle*/
fscanf(launch_input,"%lf",&launch_array1[i][2]);

/*specific impulse*/
fscanf(launch_input,"%lf",&launch_array1[i][3]);

/*burn start time*/
fscanf(launch_input,"%lf",&launch_array1[i][4]);

/*burn stop time*/
fscanf(launch_input,"%lf",&launch_array1[i][5]);

/*propellant mass*/
fscanf(launch_input,"%lf",&launch_array1[i][6]);

/*mass burnt per time [kg/sec]*/
launch_array1[i][7]=launch_array1[i][0]*launch_array1[i][1]

/launch_array1[i][3];
/*actual propellant mass*/

launch_array1[i][8]=launch_array1[i][6];
/*separation time*/

fscanf(launch_input,"%lf",&launch_array1[i][9]);
/*separation mass*/

fscanf(launch_input,"%lf",&launch_array1[i][10]);
};

/* a) Read input for additional mass: */
if (additional_mass_flag != 0)
{

for (i=0; i<additional_mass_flag; i++)
{

/*mass*/
fscanf(launch_input,"%lf",&launch_array2[i][0]);

/*start time*/
fscanf(launch_input,"%lf",&launch_array2[i][1]);

/*stop time*/
fscanf(launch_input,"%lf",&launch_array2[i][2]);

150

APPENDIX D. THE SOURCE CODE

if ((launch_array2[i][2]-launch_array2[i][1]) != 0.)
/*mass lost per time [kg/sec]*/

launch_array2[i][3]=launch_array2[i][0]/
(launch_array2[i][2]-launch_array2[i][1]);

else
launch_array2[i][3]=0.;

/*actual mass*/
launch_array2[i][4]=launch_array2[i][0];

};
};

fclose (launch_input);

/*Calculate the actual thrust and mass*/

*mass=*thrust=0.;

/*first we consider the boosters:*/

for (i=0; i<amount_of_stages; i++)
{

if (time < launch_array1[i][4])
*mass = *mass + launch_array1[i][6] + launch_array1[i][10];

/*time is during the firing interval*/
if (time >= launch_array1[i][4] && time < launch_array1[i][5])
{

*thrust = *thrust + launch_array1[i][0]*launch_array1[i][1]
*cos(launch_array1[i][2]*PI/180.);

launch_array1[i][8]=launch_array1[i][6]-(time-launch_array1[i][4])
*launch_array1[i][7];

*mass= *mass + launch_array1[i][8] + launch_array1[i][10];
};

/*time is after firing but before separation*/
if (time >= launch_array1[i][5] && time < launch_array1[i][9])
{

launch_array1[i][8]=launch_array1[i][6]-(launch_array1[i][5]-
launch_array1[i][4])*launch_array1[i][7];

*mass= *mass + launch_array1[i][8] + launch_array1[i][10];
};

};

151

APPENDIX D. THE SOURCE CODE

/*Now we take into account the additional mass*/

if (additional_mass_flag != 0)
{

for (i=0; i<additional_mass_flag; i++)
{

if (launch_array2[i][3] != 0.)
{

if (time < launch_array2[i][1])
*mass = *mass + launch_array2[i][0];

if(time >= launch_array2[i][1] && time < launch_array2[i][2])
{

launch_array2[i][4]=launch_array2[i][0]-
(time-launch_array2[i][1])*launch_array2[i][3];

*mass = *mass + launch_array2[i][4];
};

};

if (launch_array2[i][3] == 0. && time < launch_array2[i][1])
*mass = *mass + launch_array2[i][0];

};
};

/*Finally we should add the payload mass*/

*mass = *mass + payload_mass;
}

/*--- */
/* -------- FUNCTION for the computation of Cd as ---------- */
/* function of AoA and MACH */
/*--- */

double get_Cd3(double mach, double AoA, double AoA_array[30],
double MACH_array[30], double Cd_array[30][30],
int amount_of_MACH, int amount_of_AoA)

/*This function receives arrays that contain the necessary */
/*information about Cd as a function of MACH number and angle */
/*of attack */

{
int AoA_left, AoA_right, mach_left, mach_right;
double u,v;

152

APPENDIX D. THE SOURCE CODE

/*help variables for the interpolation of the Cd values*/
double Cd;
int i,j;

AoA=AoA*180/acos(-1);

/*if there is no Cd for the actual mach number or angle of */
/*attack the program should be stopped */

if (mach < MACH_array[0] || mach > MACH_array[amount_of_MACH-1] ||
AoA < AoA_array[0] || AoA > AoA_array[amount_of_AoA-1])

{
printf("\nFor the actual mach number there is no

Cd-coefficient available!");
printf("\nThe program is stopped!");
exit(0);

}

/*check the MACH-AoA matrix for the position of the actual */
/*values of mach number and angle of attack */

for (i=1; i<=amount_of_MACH; i++)
{

if (mach <= MACH_array[i])
{

mach_left = i-1;
mach_right = i;
break;

};
};
for (i=1; i<=amount_of_AoA; i++)
{

if (AoA <= AoA_array[i])
{

AoA_left = i-1;
AoA_right = i;
break;

};
};

/* 2-D Interpolation to get Cd */
u= (Cd_array[mach_left][AoA_right]-Cd_array[mach_left][AoA_left])*

(AoA-AoA_array[AoA_left])/(AoA_array[AoA_right]-AoA_array[AoA_left])+
Cd_array[mach_left][AoA_left];

v= (Cd_array[mach_right][AoA_right]-Cd_array[mach_right][AoA_left])*
(AoA-AoA_array[AoA_left])/(AoA_array[AoA_right]-AoA_array[AoA_left])+

153

APPENDIX D. THE SOURCE CODE

Cd_array[mach_right][AoA_left];

Cd= (v-u)*(mach-MACH_array[mach_left])/
(MACH_array[mach_right]-MACH_array[mach_left])+u;

return Cd;
}

/*--*/
/*----------- FUNCTION for the computation of Cl as ----------*/
/* function of AoA and MACH */
/*--- */

double get_Cl3(double mach, double AoA, double AoA_array[30],
double MACH_array[30], double Cl_array[30][30],
int amount_of_MACH, int amount_of_AoA)

/*This function receives arrays that contain the necessary */
/*information about Cd as a function of MACH number and angle */
/*of attack */

{
int AoA_left, AoA_right, mach_left, mach_right;

/*help variables for the interpolation of the Cd values*/
double u,v;
double Cl;
int i,j;

AoA=AoA*180/acos(-1);

/*if there is no Cl for the actual mach number or angle of */
/*of attack the program should be stopped */

if (mach < MACH_array[0] || mach > MACH_array[amount_of_MACH-1] ||
AoA < AoA_array[0] || AoA > AoA_array[amount_of_AoA-1])

{
printf("\nFor the actual mach number there is no Cl-coefficient available!");
printf("\nThe program is stopped!");
exit(0);

}

/*check the MACH-AoA matrix for the position of the actual */
/*values of mach number and angle of attack */

for (i=1; i<=amount_of_MACH; i++)
{

if (mach <= MACH_array[i])

154

APPENDIX D. THE SOURCE CODE

{
mach_left = i-1;
mach_right = i;
break;

};
};
for (i=1; i<=amount_of_AoA; i++)
{

if (AoA <= AoA_array[i])
{

AoA_left = i-1;
AoA_right = i;
break;

};
};

/* 2-D Interpolation to get Cd */
u= (Cl_array[mach_left][AoA_right]-Cl_array[mach_left][AoA_left])*

(AoA-AoA_array[AoA_left])/(AoA_array[AoA_right]-AoA_array[AoA_left])+
Cl_array[mach_left][AoA_left];

v= (Cl_array[mach_right][AoA_right]-Cl_array[mach_right][AoA_left])*
(AoA-AoA_array[AoA_left])/(AoA_array[AoA_right]-AoA_array[AoA_left])+
Cl_array[mach_right][AoA_left];

Cl= (v-u)*(mach-MACH_array[mach_left])/
(MACH_array[mach_right]-MACH_array[mach_left])+u;

return Cl;
}

/*--*/
/* ---------------------- FUNCTION PITCH ------------------- */
/* needed for launch,returns actual PITCH from pitch_input.txt*/
/*--- */

double get_theta_L2 (double time, int amount_of_pitches,
double pitch_array[30][4])

{
int i;
double time_left, time_right, pitch_left, pitch_right;
double slope, b;
double theta;

for (i=0; i<amount_of_pitches; i++)
{

if (pitch_array[i][0]<=time && pitch_array[i][1]>time)

155

APPENDIX D. THE SOURCE CODE

{
time_left=pitch_array[i][0];
time_right=pitch_array[i][1];
pitch_left=pitch_array[i][2];
pitch_right=pitch_array[i][3];

/*Interpolate between specified points and return pitch angle */

slope=get_slope(time_left,time_right,pitch_left,pitch_right);
b=pitch_left-(time_left*slope);
theta = slope* time+b;
return theta;
break;

};
};
printf("\n Could not find pitch! Please check pitch_input.txt!\n");
return 0;

}

/*--- */
/* THIS FILE CONTAINS THE FUNCTION THAT CALCULATES */
/* THE DISCREPANCY BETWEEN THE SPECIFIED ENTRY INTERFACE */
/* AND THE POSITION THAT WOULD BE REACHED IF THE */
/* DE-ORBIT BURN TOOK PLACE IMMEDIATELY. */
/* IF THE DIFFERENCE IS SMALL ENOUGH */
/* (+/-50KM AT 120KM ALTITUDE) THE COMMAND FOR THE BURN IS */
/* GIVEN. FOR THE PREDICTION THE SAME ALGORITHM AS FOR THE */
/* MAIN PROGRAM IS APPLIED. */
/*--- */

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
#include "functions2.h"

/*--- */
/*--- */

int landspotpredict(double r0, double V0, double gamma0,
double l0, double L0,double chi0,
double deorbit_V, double S, double m,
double Cd,double Cl, double bank, int gravi_flag)

{

/*8th order Runge-Kutta coefficients*/
double a[9][9],b[9];

156

APPENDIX D. THE SOURCE CODE

/*coefficients for each variable in Runge Kutta*/
double kr[9],kgamma[9],kL[9],kl[9],kchi[9],kV[9];

/*fields for munipulation of each variable*/
double r[2],L[2],chi[2],V[2],gamma[2],l[2];

/*air density,air density at ground level,bank angle*/
double rho,rho0,my;

/*angular velocity Earth*/
double omega;

/*radius of the Earth,gravitational constant*/
double radius,g;

/*time passed by, intergrating time step, pi*/
double time,t,PI;

/*changes in the variables*/
double dr,dV,dgamma,dL,dl,dchi,ddr,ddV,ddl,ddL,ddgamma,ddchi;

/*counters*/
int i,j,q,s;

float x,taem_latitude, taem_longitude, taem_altitude, taem_fpa;

/*Normal force,tangential force,thrust,angle of attack*/
double F_N, F_T, T, alpha;

FILE* taem;
/*--- */

taem = fopen ("Deorbit.txt","r");

if (taem != 0)
{
fscanf(taem,"%f",&taem_longitude);
fscanf(taem,"%f",&taem_latitude);
fscanf(taem,"%f",&taem_altitude);
fscanf(taem,"%f",&taem_fpa);
}

else
{
printf("\nDeorbit.txt cannot be found!\n");
exit(1);
assert(0);
};

157

APPENDIX D. THE SOURCE CODE

/*coefficients for 8th-order Runge Kutta*/
a[1][1]=0.; a[2][2]=0.; a[3][3]=0.; a[4][4]=0.;
a[5][5]=0.; a[6][6]=0.; a[7][7]=0.; a[8][8]=0.;
a[2][1]=1./6.; a[3][1]=4./75.; a[3][2]=16./75.;
a[4][1]=5./6.; a[4][2]=-8./3.; a[4][3]=5./2.;
a[5][1]=-8./5.; a[5][2]=144./25.; a[5][3]=-4.;
a[5][4]=16./25.;a[6][1]=361./320.;a[6][2]=-18./5.;
a[6][3]=407./128.; a[6][4]=-11./80.;a[6][5]=55./128.;
a[7][1]=-11./640.; a[7][2]=0.; a[7][3]=11./256.;
a[7][4]=-11./160.; a[7][5]=11./256.; a[7][6]=0.;
a[8][1]=93./640.; a[8][2]=-18./5.; a[8][3]=803./256.;
a[8][4]=-11./160.; a[8][5]=99./256.;a[8][6]=0.;a[8][7]=1.;

b[1]=7./1408.; b[2]=0.; b[3]=1125./2816.; b[4]=9./32.;
b[5]=125./768.; b[6]=0; b[7]=5./66.; b[8]=5./66.;

/*--- */
/*---------------- Initialization of variables ---------------*/
/*--- */

radius=6378136.49;
PI=acos(-1);
rho0=1.225;
omega=7.27221e-5;

t=1.;

j=1;
time=0;

/*Landing spot margin for Longitude*/

x = 2.*PI/360.*radius/1000.*cos(taem_latitude/180.*PI);

r[0]=r0;
V[0]=V0-deorbit_V;
l[0]=l0;
L[0]=L0;
gamma[0]=gamma0;
chi[0]=chi0;

my=bank;

158

APPENDIX D. THE SOURCE CODE

/*--- */
/*------- The numerical loop (Runge-Kutta algorithm) -------- */
/*--- */

do
{
r[1]=r[0];
V[1]=V[0];
l[1]=l[0];
L[1]=L[0];
chi[1]=chi[0];
gamma[1]=gamma[0];

i=0;

time=j*t;

for (q=1;q<=8;q++)
{
if (r[1]<=6533195)

{
rho=rho0*exp((-900*(r[1]-6378135))/6378135);}

else
rho=3.5e-12*exp(-(((r[1]-6378135)/1000)-380)/48);

if (gravi_flag == 0)
g = 3.9894065e14/(r[1]*r[1]);

if (gravi_flag == 1)
g = g_factor(L[1],l[1],r[1]);

T=0;
alpha=0;
F_N = T*sin(alpha) + 0.5*rho*S*Cl*V[1]*V[1];
F_T = T*cos(alpha) - 0.5*rho*S*Cd*V[1]*V[1];

/*calculations of changes in six variables*/
dr = delta_r(V[1],gamma[1]);

dV = delta_V(V[1],gamma[1],chi[1],
r[1],L[1],g,m,omega,my,F_T);

dl = delta_l(V[1],gamma[1],chi[1],r[1],L[1]);

dgamma = delta_gamma(V[1],gamma[1],chi[1],
r[1],L[1],g,F_N,m,omega,my);

dL = delta_L(V[1],gamma[1],chi[1],r[1]);

159

APPENDIX D. THE SOURCE CODE

dchi = delta_chi(V[1],gamma[1],chi[1],
r[1],L[1],g,m,omega,F_N,my);

kr[q] = t * dr;
kV[q] = t * dV;
kl[q] = t * dl;
kL[q] = t * dL;
kchi[q] = t * dchi;
kgamma[q] = t * dgamma;

r[1]=r[0];
V[1]=V[0];
l[1]=l[0];
L[1]=L[0];
chi[1]=chi[0];
gamma[1]=gamma[0];

for (s=1;s<=q;s++)
{
r[1]=r[1] + kr[s] * a[q+1][s];
V[1]=V[1] + kV[s] * a[q+1][s];
l[1]=l[1] + kl[s] * a[q+1][s];
L[1]=L[1] + kL[s] * a[q+1][s];
chi[1]=chi[1] + kchi[s] * a[q+1][s];
gamma[1]=gamma[1] + kgamma[s] * a[q+1][s];
};

};

ddr=ddV=ddl=ddL=ddgamma=ddchi=0;

for (q=1;q<=8;q++)
{
ddV = ddV + kV[q] * b[q];
ddr = ddr + kr[q] * b[q];
ddl = ddl + kl[q] * b[q];
ddL = ddL + kL[q] * b[q];
ddchi = ddchi + kchi[q] * b[q];
ddgamma = ddgamma + kgamma[q] * b[q];
};

r[1] = r[0] + ddr;
V[1] = V[0] + ddV;
l[1] = l[0] + ddl;
L[1] = L[0] + ddL;
chi[1] = chi[0] + ddchi;
gamma[1] = gamma[0] + ddgamma;

160

APPENDIX D. THE SOURCE CODE

r[0]=r[1];
V[0]=V[1];
l[0]=l[1];

/*reset of longitude if >360*/
if (l[0]>2*PI)

{
l[0]=l[0]-2*PI;
};

L[0]=L[1];
chi[0]=chi[1];
gamma[0]=gamma[1];

j++;
}
while (r[i]/1000-6378.149>=taem_altitude);

/*--- */
/*------------- End of Runge-Kutta algorithm --------------- */
/*--- */

fclose(taem);

if ((L[0]/PI*180 < taem_latitude+5./7.) &&
(L[0]/PI*180 > taem_latitude-5./7.) &&
(l[0]/PI*180 < taem_longitude + 50./x) &&
(l[0]/PI*180 > taem_longitude - 50./x))
{

/*THE ACTUAL POSITION CORRESPONDS TO THE AIMED ENTRY INTERFACE */
printf("\nExpected time to reach TAEM: %f sec",time);
return 1;
}

else
/*THE ENTRY INTERFACE CANNOT BE REACHED THIS TIME. GO ON.*/

return 0;
}

161

APPENDIX D. THE SOURCE CODE

D.3 The data bases

In the following an example of the format of the data bases containing the values of the
magnetic index Ap and the 10.7 cm solar flux is given. Both data bases have the same format
and are a mandatory part of the presented version of the NRLMSISE-00 atmosphere model
and the related functions.

const double flux[54][366] ={

//1960//

{ 170, 172.1, 179, 189.8, 209.5, 211.4, 220.3, 215.2,
197.5, 190.6, 196.5, 180.8, 174.9, 172.9, 179.4, 179.6,
175.7, 172.8, 161, 154.1, 159, 168.7, 184.4, 205.9,
225.5, 237.3, 243.4, 247.4, 232.6, 225.8, 220.1, 220.9,
209.1, 211.1, 205.4, 205.4, 188.7, 184, 179.7, 179.7,
174.9, 172, 163.1, 164.3, 164.3, 157.2, 155.4, 150.5,
148.7, 143.5, 140, 153.8, 146.7, 141, 138, 145.1,
145.1, 145.2, 138.3, 138.4, 135.3, 135.5, 136.5, 137.6,
138.6, 133.8, 137.7, 139.7, 141.7, 130.9, 130.9, 128.1,
134, 133.2, 136, 141.1, 139.2, 132.3, 136.4, 142.4,
144.6, 149.4, 153.5, 157.5, 156.7, 160, 168.9, 175,
181, 193.2, 182.2, 201.2, 184.2, 179.4, 188.6, 182.5,
169.7, 165.7, 147.7, 148.7, 156.9, 160.1, 169.2, 180.4,
184.5, 191.5, 184.5, 179.6, 177.8, 171.7, 176.9, 164.8,
161.9, 168, 167.1, 148.9, 145, 142.1, 144.1, 155.5,
163.6, 154.6, 162.7, 160.8, 158.8, 154.9, 159, 165.2,
171.4, 173.4, 173.6, 183.8, 182.9, 173.7, 165.7, 165.6,
158.6, 154.5, 156.7, 156.7, 163.8, 168.1, 168.1, 167.2,
168.3, 167.2, 162.3, 170.5, 175.6, 174.8, 174.8, 163.5,
170.8, 171.8, 171.8, 177, 175.1, 180.2, 190.5, 190.5,
186.6, 183.5, 176.3, 172.2, 167.2, 171.3, 171.3, 162,
157.9, 143.6, 144.6, 137.4, 135.3, 134.3, 140.5, 136.4,
144.6, 160.3, 169.6, 190.3, 196.5, 200.6, 215.1, 214,
217.1, 219.2, 216.1, 206.8, 193.4, 182, 182, 171.6,
158.2, 146.7, 139.5, 143.6, 150.8, 148.8, 158, 164.2,
161.1, 157, 157.9, 152.7, 155.8, 164.1, 152.7, 153.8,
154.6, 153.6, 158.8, 150.5, 149.3, 144.2, 138, 128.7,
125.5, 129.7, 130.7, 137.9, 149.2, 156.4, 174.8, 192.2,
220, 240.3, 244.4, 246.5, 247.3, 253.4, 256.5, 239.9,
224.5, 205.8, 193.5, 174.9, 165.7, 161.6, 165.6, 153.3,
142.9, 131.7, 131.6, 134.6, 139.7, 155, 151.8, 144.7,
144.6, 151.7, 164.8, 172.9, 175.8, 177.8, 177.6, 179.7,
183.7, 183.7, 180.5, 179.5, 187.4, 192.3, 201.4, 197.1,
191.1, 186, 176.9, 163.6, 156.4, 149.3, 143.1, 133.1,
124.9, 121.8, 115.8, 112.7, 120.7, 132.7, 132.7, 132.5,

162

APPENDIX D. THE SOURCE CODE

144.6, 143.6, 151.5, 159.5, 152.3, 159.3, 162.2, 166.2,
165.2, 165, 167, 153.8, 152.8, 148.7, 143.7, 140.7,
133.7, 128.6, 129.5, 131.5, 131.3, 121.4, 130.2, 127.2,
126.1, 123.4, 128.2, 129.2, 130.1, 143, 146.8, 155.7,
166.6, 173.5, 198.2, 186.3, 166.2, 178.2, 190, 181.3,
172.4, 162.3, 151.4, 148.3, 145.3, 137.4, 125.6, 114.7,
111.6, 109.6, 115.6, 117.4, 115.4, 117.4, 129.1, 134.3,
143.2, 150, 160.8, 156.9, 158.8, 149.8, 151.9, 148,
149, 141.9, 138, 134, 130.1, 136.1, 132, 123.2,
116.3, 113.3, 116.3, 114.3, 104.4, 101.4, 104.4, 109.2,
114.1, 122.9, 133.7, 142.6, 156.4, 160.3 },

163

APPENDIX D. THE SOURCE CODE

D.4 Examples of the input files

D.4.1 orbit input.txt

1000.00
400.00
279.16
51.6
1
1
1
//
1) apogee [km]
2) perigee [km]
3) longitude [deg]
4) inclination [deg]
5) latitude flag:

1=start at perigee minimum latitude
2=start at perigee maximum latitude
3=start at apogee minimum latitude
4=start at apogee maximum latitude

6) direction flag: 1=eastwards
2=westwards

7) deorbit flag: 0=no deorbit burn
1=deorbit burn to reach entry interface
specified in Deorbit.txt

D.4.2 manual input.txt

101.783
7620.
-1.57
53.09
40.426
42.266
0
//
1) Initial Altitude r[0] [km]
2) Initial relative Velocity V[0] [m/s]
3) Initial Flight Path Angle gamma[0] [deg]
4) Initial local Azimuth chi[0] [deg]
5) Initial Latitude L[0] [deg]
6) Initial Longitude l[0] [deg]
7) Deorbit flag 0=no deorbit burn

1=deorbit burn to reach the entry interface
specified in Deorbit.txt

164

APPENDIX D. THE SOURCE CODE

D.4.3 launch input.txt

5.24
307.22
40.22
0.
3
7100.
3

4.
1021000.
0.
3129.39
0.
118.344
156640.
118.344
19874.3

1.
990200.
0.
3129.39
0.
278.
90100.
278.
8165.

1.
298000.
0.
3521.79
280.
578.
25400.
578.
2026.

2700.
203.
203.

3500.
0.
118.344

165

APPENDIX D. THE SOURCE CODE

700.
0.
278.
//
1) Latitude [deg]
2) Longitude[deg]
3) launch azimuth [deg]
4) Lift-off time after ignition [sec]
5) amount of stages[INTEGER]
6) payload mass [kg]
7) additional mass flag [INTEGER]
(if there is any additional mass that is lost during the launch
(NOT the propellant, but e.g. water for cooling or fairing) this
flag contains the amount of mass items that are to be defined
further down!) e.g.

0 denotes NO additional mass
1 denots ONE additional mass item

and so on...

for EACH stage:
8) number of engines [FLOAT!!! e.g.: 2.0]
9) thrust per engine [N]
10) angle between thrust and rocket axis (if any) [deg]
11) specific impulse [m/s]
12) burn start [s]
13) burn stop [s]
14) propellant mass of stage (e.g. for ALL engines) [kg]
15) separation time [s]
16) separation mass of (whole!) stage [kg]

after ALL stages have been characterized the additional mass has
to specified (if additional mass flag NOT 0):

17) additional mass [kg]
18) start time of lost
19) stop time of lost

166

APPENDIX D. THE SOURCE CODE

D.4.4 Deorbit.txt

42.266
40.4313
101.78
-1.51
//
Entry interface longitude [deg]
Entry interface latitude [deg]
Entry interface altitude [km]
Entry interface FPA [deg]

D.4.5 spacecraft input.txt

2840.
3.8
0
0.
0
1.26
0.
0.
//
1) mass [kg]
2) reference surface [m^2]
3) lift coefficient flag:

0= take the following value
1= call function to look up value from Cl_input

4) lift coefficient Cl
5) drag coefficient flag:

0= take the following value
1= call function to look up value from Cd_input

6) drag coefficient Cd 7) bank angle [deg]
8) angle of attack [deg]

D.4.6 CD input.txt, CL input.txt

11 2
0.0 0.7 0.8 0.9 1.0 1.05 1.1 1.5 2.0 3.0 35.
0.0 180.0
2.22 2.22
2.22 2.22
2.17 2.17
2.46 2.46
3.09 3.09
3.2 3.2
3.08 3.08
2.4 2.4

167

APPENDIX D. THE SOURCE CODE

1.92 1.92
1.28 1.28
1.28 1.28
//
1) # of MachNumbers, # of AoA
2) Mach Numbers in ascending order!!!
3) AoA in ascending order!!!
4-...) Data

D.4.7 pitch input.txt

0
14
0. 12. 90. 90.
12. 17.9 90. 86.3
17.9 20. 86.3 86.3
20. 36.8 86.3 76.8
36.8 61.3 76.8 60.
61.3 80.6 60. 46.3
80.6 100. 46.3 36.7
100. 117. 36.7 30.2
117. 120. 30.2 35.8
120. 205. 35.8 25.2
205. 319. 25.2 12.5
319. 400. 12.6 4.4
400. 450. 4.4 -1.
450. 567. -1. -12.6
//
1) pitch_flag [INTEGER] 0=inertial pitch,

launch pad reference frame
1=local pitch, spacecraft reference frame

2) amount of equations [INTEGER]
How many lines are about to follow?

3) Data Format: [FLOAT]

start_of_time_interval stop_of_time_interval
pitch@start_time pitch@stop_time

(The get_theta function will use this data for linear
interpolation)

168

APPENDIX D. THE SOURCE CODE

D.4.8 physical model input.txt

6378136.49
7.2921159e-5
3.98941e14
0.
350
2001
1
0
0.5
1
//
1) Earth Radius [m]
2) Angular Velocity Earth [rad/sec]
3) Gravitational constant times Earth mass
4) UT [sec]
5) DOY [DDD] as integer
6) YEAR [YYYY] as integer
7) atmospheric flag 0=no atmosphere

(INTEGER) 1=analytical model
2=NRLMSISE-00 model

8) gravitational field flag 0=spherical gravitational field
(INTEGER) 1=J-2 correction terms

9) integration timestep [sec]
10) printflag

Defines which results are written in files:
1 = every result is written in files
2 = every second result is written
3 = every third result is written
...

D.4.9 stop condition input.txt

1
11.7
//
1) type flag: (defines the type of stop condition)

1=altitude at which the program is stopped coming down (e.g.: 120.)
2=altitude at which the program is stopped for launch (e.g.: 80.)
3=amount of orbits that are to be computed (e.g.: 10)
4=amount of seconds that the program is to run (e.g.: 1000.)

2) limit: contains the value of the stop condition
Type depends on type flag: can be INTEGER or FLOAT

169

Erklärung:

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den

Unterschrift: Sascha P. Quanz

