フランツ＝ヨーゼフ・プレッケマイアー
太陽光、水力、風力
ドイツにおける
エネルギー転換の発展

よき社会－
社会民主主義
#2017 plus
よき社会
社会民主主義
#2017 plus
2015–2017年
フリードリヒ・エーベルト財団プロジェクト

「よき社会」とは何でしょう？私どもフリードリヒ・エーベルト財団にとって、それは社会正義、生態学的な持続可能性、革新的かつ順調な経済、そして市民が積極的に参加できるような民主主義を意味します。こうした社会は、自由、正義、連帯という基本的価値観に支えられて初めて成り立つものです。

よき社会を実現するためには、新しい発想や概念が必要です。そこでフリードリヒ・エーベルト財団では、今後数年間にわたって行われる政治について、具体的な提言を行うことに致しました。特に次のようなことは、重点的に取り組んでまいります。

一 基本的価値観「自由、正義、連帯」に関する討論
一 民主主義と民主主義的な政治参加
一 「新しい成長（ニューグロース）」と積極的な財政および経済政策
一 ディセントワークと社会的進歩

よき社会とは、ひとりでに生まれるものではありません。市民全員で、絶えず協力しながら作っていくなければなりません。このプロジェクトのために、フリードリヒ・エーベルト財団では世界中に広がるネットワークを駆使し、ドイツの、ヨーロッパの、そして世界の視点を1つにつないでまいります。そして2015年から2017年にかけて、数多くの出版物やイベントを通じて、よき社会の実現に向けて努力していく所存です。

プロジェクトに関して詳しくは：
www.fes-2017plus.de

筆者について
フランツ＝ヨーゼフ・ブリュッゲマイアー
アルベルト・ルートヴィヒ大学（ドイツ、フライブルク）史学部教授。
経済史、社会史、環境史を教える。

編集責任者
フリードリヒ・エーベルト財団
フィリップ・フィンク博士

フリードリヒ・エーベルト財団の経済および社会政策部門で、気候、環境、エネルギー、構造政策の責任者を務め、「よき社会－社会民主主義、#2017plusプロジェクトでは、エネルギーと気候に関するプロジェクトグループの責任者。
フランツ＝ヨーゼフ・ブリュッゲマイアー
太陽光、水力、風力——ドイツにおけるエネルギー転換の発展

3 はじめに

4 1. 序論

6 2. 歴史に見るエネルギー転換
6 2.1 石炭、そして化石燃料時代への推移
7 2.2 石油と原子力
8 2.3 原子力と石油依存

10 3. 現代におけるエネルギー転換
10 3.1 目標
10 3.2 ドイツにおける「再生可能エネルギー法（EEG）」—その背景と歴史
11 3.3 原子力撤廃 I および II
13 3.4 再生可能エネルギー法の施行
13 3.4.1 供給の確保
18 3.5 ヨーロッパ
20 3.6 対費用効果
21 3.6.1 外部費用
21 3.6.2 再生可能エネルギー賦課金と市場価格
24 3.6.3 効率と節約
25 3.7 環境適合性

28 4. 結論

29 参考文献
ドイツにおけるエネルギー転換の発展

2014年5月11日、再生可能エネルギーによる発電量が、時間でありますが、ドイツの電力需要の80パーセントに達しました。これは、当時の最高記録です。2014年全体を通して、再生可能エネルギーは記録を作りました。太陽光、風力、水力そしてバイオマスによる発電量が、初めて電力需要の27パーセントを超えたのです。つまり、総発電量の3パーセントに過ぎなかった再生可能エネルギーの割合が、25年間で4分の1にまで膨れ上がったわけです。その後、ドイツ国内では37万人以上が再生可能エネルギー関連分野で働いています。こうした状況を見ると、「エネルギー転換」、つまり化石エネルギーや気候に悪影響を与えるエネルギー生産から脱却しようという巨大な目標も、少なくとも発電に関しては、実現に近づいていると言えるでしょう。しかしドイツのエネルギー転換策には、絶えず国際的な関心を集めています。この計画の柱で、再生可能エネルギー源の開発について定めた法律「再生可能エネルギー法（EEG）」は、すでに65か国が手本としています。

今でこそこうした成果が上がっているものの、エネルギー転換への道のりは、決して容易ではありませんでした。エネルギーを替えというとは、1つの工業社会のエネルギーシステムを、丸ごと交換することを意味するからです。しかしエネルギー転換を単なる統計値や技術の問題ではなく、包括的な次元で説明しようとするとき、意思決定に至る環境的、経済的、政治的な前後関係を詳しく検証しなければならないのです。エネルギー転換は具体的にはどのように進められたのか？どのような画期的な変化を経てきたのか？誰が、どのように計画を推し進めてきたのか？どんな利益が追求され、それはどう変化したのか？歴史と、似たような事例はあったのだろうか？

本論文ではこうした点を、アルベルト・ルートヴィヒ大学（ドイツ、フライブルク）のフランツ＝ヨーゼフ・ブリュッガマイア－教授が追究します。ブリュッガマイア－教授はまず、「エネルギー転換は単にエネルギー政策の3つの側面（供給の安定性・対用効果・環境適合性）を調和させるだけでなく、政治面・経済面・技術面それぞれにおける課題・解決策・利益を考慮しなければならない」と説明します。そして歴史を振り返りながら、「エネルギー転換の実施にあたっては、さまざまな利害関係のバランスを保つため、複雑な妥協が絶えず行われてきた」ことを明らかにしていきます。

ブリュッガマイア－教授はまた、「エネルギー転換の方向を決めるにあたっては、社会民主主義が社会的および政治的に指導者の役割を果たすこと」と指摘します。なぜなら他の政治運動と違い、社会民主主義は、エネルギー産業および工業界とその労働者たちと伝統的に密接なつながりを持っていたからです。さらに社会民主主義は、エネルギー転換に重要な役割を果たした先駆者たちを、数多く輩出してきました。勝者と敗者の利害の微妙なバランスを保つことは、関係者の多くにとってなかなか難しいもので、社会民主主義はこれに取り組みつつ、社会的および経済的近代化への1つのプロセスとして、エネルギー転換を推進してきました。将来このバランスは、エネルギー転換の発展を左右する鍵となるでしょうし、それを成し遂げることこそ社会民主主義の基本課題なのです。

フリードリヒ・エーベルト財団のプロジェクト「よき社会、社会民主主義#2017plus」の一環として、プロジェクト担当チームはエネルギーおよび気候政策の経過を追跡し、それらが社会民主主義にとってどんな意味を持つのかを分析してまいります。

それでは、本論をお楽しみください。

フリードリヒ・エーベルト財団
経済社会政策部
フィリップ・フィンク博士
1. 序論

温室効果ガスの排出を減らし、心配される温度上昇を食い止めようと、世界中でエネルギー転換が検討されてきた。石炭、褐炭、ガス、石油のような化石エネルギーを、風力、水力、太陽光、バイオマスのような再生可能エネルギーに替えるのである。このため多くの国々が、懸命な努力を重ねてきた。その中でドイツはときわ大きな進歩を見せ、何が実現可能かという点だけでなく、どんな問題を克服しなければならないかも提示してきた。ドイツはエネルギー転換によって、化石エネルギーの削減のみならず、さまざまな危険と放射性廃棄物を伴う原子力の撤廃を目指している。この意欲的な目標設定のおかげで、ドイツのプロジェクトは世界中から大きな注目を集めているのだ。

エネルギー転換に当たっては、市民活動グループや環境保護団体の役割が強調される。だがこうしたグループは運動を起こし盛り上げることはできても、法の制定といった必要な意思決定はできない。大きな政治運動による捏造が必要なのである。ドイツでは社会民主主義がこの役目を担ってきた。もっとも既存の産業界やその雇用者たちと強い結びつきがあり、何度なく近代化を支えてきた社会民主主義は、こうした役割には適任なのだ。

ドイツ社会民主党（SPD）は、エネルギー転換を単に推し進めることだけはしなかった。支援するだけでなく、まずは疑いの目を持って詳細にプロジェクトを検討した。これは当然のことだろう。エネルギーの利用と供給は、近代工業社会の非常に基礎的な部分を成しているので、わずかな変更でも大きな影響を及ぼし、矛盾を引き起こす可能性があるからだ。こうした矛盾は環境保護団体が常に喚く点だが、避けては通れない。

そんな中で、正面から取り組み、政治的にも許容可能な解決策を見つけることは非常に大事なのだ。この点について、SPDは他党よりも大きく貢献した。過去のエネルギー転換の経験に、少からず懸念ができたからだ。以前のエネルギー転換は違う目的のためだったが、この時の経験から、こうした問題に取り組むには自らの発想を常に再度検討し、必要に応じて修正することがいかに大切かわかっていた。

よい例が、1950年代にあれほど大きな期待を集めた原子力
ドイツにおけるエネルギー転換の発展

への転換である。薄汚い石炭時代の終結と、ほとんど無限で安くてクリーンなエネルギーの供給を約束した原子力だったが→1980年頃になって、とてももない危険が伴うことがわかった。当時すでに再生可能エネルギーも代替案として挙げられたのだが、まだほとんど開発が進んでおらず、実用化はずっと先というのが一般的見方だった。そこで、より現実的に思えた石炭の使用が復活したのである。その結果、数十年も使用に耐える新しい火力発電所が次々と建設されてしまった。それらは現在まだ稼働中で、エネルギー転換の大きな妨げとなっている。

過去のエネルギー転換の問題点を振り返るのは、現状から目をそらすことはならない。むしろ現在のエネルギーシステムを理解し、その適応能力を評価するためには必要なのである。エネルギーシステムとは巨大タンカーのようなもので、進行方向を変えるのが容易ではない。いったん決まったことは、新しく建設された火力発電所のように、長年にわたって影響を及ぼす。さらにタンカーの艦長が1人ではなく複数で、しかもそれぞれ違った分野のエネルギー供給を担当していて、目指す方向も違ったから、方向転換はますます難しくなる。発電所、送電網、精製所および焼炭鉱山の事業者。石油、石炭、ガスの供給元、太陽光発電装置や風力タービンの製造業者。そしてもちろん、こうした分野で働く人たち。さらに政党や政治家たちははっきりとした目標、特に雇用の確保を目指して、エネルギー供給問題を取り組んでいる。

この問題はあまりに多くのグループや利害が絡んでいて、却って前に進めないため、エネルギー転換の早期実現を願う人は気が挫けてしまうことも多い。待ち切れなくなるのも無理はないだろう。だがエネルギー転換は技術だけの問題ではないので、簡単には方策が決まられない。エネルギー政策の3つの目標すべてを考慮に入れてなければならないからだ。確実に、生態学的に持続可能な方法で、しかも低コストでエネルギーを供給する。つまり、方向転換しようという試みは完全に政治的な問題であって、数えきれないほどの疑問が生じてくるし、広範囲にわたって利害の調整が必要なのだ。だから、必要な社会的コンセンサスを作り上げ、勝者にも敗者にも配慮するためには、SPDのような政党がまずます重要になってくる。
2
歴史に見るエネルギー転換

2.1 石炭、そして化石燃料時代への推移

200年ほど前に工業化が始まった頃、社会と経済はほとんど全面的に再生可能エネルギーに頼っていった。石炭は長いこと使用されていたがその量はわずかで、石油やガスはまだ使われていなかった。この頃のエネルギーについて、一般的な概念として語るには問題がある。当時行われていたのは主に熱を起こすこと（特に木材を燃やして）、風力、水力、動物、人間を動力として利用することだった。熱を動的に変換するといった、普遍的な意味でのエネルギーは当時、存在しなかったのである。エネルギーの利用という考え方が生まれたのは蒸気機関が導入された時に、それが工業化へとつながっていた。

熱を起こすのに群を抜いて重要なのは、再生可能資源である木材だった。風や水もまた車を回し、それで穀物を引いたり耕したり、船を動かしたりできた。人や動物の筋力も同じくらい大事で、荷物を運んだり道具を使った、いろいろな仕事をした。だがこれらのエネルギー源の中で持続可能だったのは、木材と、水と、風だけである。中でも、木材などの資源を、再生される分よりも多く使ってしまうことが何度も起きた。そこで長期にわたって利用するために、使い過ぎを避けて持続可能な供給を確保することが必要になったのである。これに対して、人と動物が労働を通過して提供するエネルギーは持続可能な利用に難しいわけはなかった。人も動物も、農業によって供給される食物がなくては生きていけなかったのである（Bruggemeier 2014: chaps.2, 3）。

全体として、農業および土から産出のエネルギーは非常に重要だった。食物だけでなく、手工業や商業や初期の工場に欠かせない素材や原材料も供給していたからだ。麻、亜麻、薬、木材など土から直接収穫される物の他に、毛、革、木、家畜から取れる物やさまざまな加工品があった。特に大事だったのは木材、この時代の最も重要な資源と言われるのも当然である。木材は熱を出すだけでなく、家や、船や、荷車などの乗物を作る材料も供給していた。そしてほとんどの日用品（食器、テーブル、椅子、ベッド）、さまざまな道具類も木で作られていった。長いこと工業化のシンボルとされていた、あの有名なジッパーゼンシマーも木製である。

木材などの原材料は、根本的に日光に依存していた。人間に必要な資源を育つためのエネルギーを供給できるのは、毎日照らしてくれる太陽だけだった。こうした資源は、持続的に利用しなければならない。毎年、使用できるのは、新しい収穫で補充できる分だけだった。収穫がよくない年には消費の方が大きくなり、蓄えに手をつける。だがこうした使い過ぎは、長く続けるわけにはいかない。木材を使い過ぎたり、家畜を飼い過ぎたりして蓄えを使い果たしたら、人間の生存自体が危うくなるのだ。だからこうした資源を使用する社会は持続可能ならざるを得ず、年によって収穫が大きく変わるため非常に不安定だった。

食糧の長期保存が困難だったことと、太陽や風や水のエネルギーを保存し遠くまで送る手段が限られていたことで、この不安定さは増大した。エネルギーはバイオマス、特に木という形で蓄積されていたが、木材は重量がありエネルギー効率もよくなかったので、非常に高価なうえ輸送も難しかった。このため、大量のエネルギーを使用する企業は、木材や水力が入手できる場所に建てられることになる。かくして生産は地方に分散し、天候や季節といった自然の変動を知り、水や木材が不足すれば生産を一時休止せざるを得なかった。言い換えればエネルギー需要の方が、かななりの部分、供給に合わせていたのである。

こうした不安定さは、人口増加が過剩になると、おおよそ大きかった。産業物の収穫は少しずつしかも増大しないので、急激な人口増加は危機的状況を意味していたからだ。持続可能資源を基盤としながらも非常に発展を遂げた社会もあり、こうした社会は工業化よりずっと以前に、めざましい科学技術の進歩と素晴らしい生活水準を手に入れていた。だが1800年頃、人口増加が過激化して危機的状況となる兆候が見え始めたのだ。

この危機がいかに深刻で、人口増加が実際に克服できないほどの問題だったのか、今日の視点で判断するのは難しい。こうした問題はしばしば起きていたし、当時の社会にも解決策は数多くあったからだ。だが、確実に言えることが2つである。1つは、こうした社会は、エネルギー源の利用に関して確かに持続可能であったということだ。だがこの持続可能性は、動的する収穫、頻繁な欠乏、短い寿命などたくさんの不安定さを伴っていており、手本にはできない。2つ目は、工業化とそれに伴う
ドイツにおけるエネルギー転換の発展

石炭の利用で、こうした不安定さが初めて克服されたということだ。石炭は持続可能なエネルギー利用のために、毎年新しく育てる必要はなかった。しかしこのエネルギー源は、無限に用いるように見えただけで、まったく新しい社会的経済的可能が開かれたのである。

石炭は保存された形のエネルギーであり、鉄道の導入後、安くまで運ぶことが可能になった。それ以来、圧倒的なエネルギーが必要な場所でしか、それ自体が自然変動の影響を受けず、さらに利用できるようになったのである。数えきれないほどの機械や工場、より効率のよい生産プロセス、そして技術革新が実現し、さらに新しい科学知識や、その他の要素も加わって、生産性は急激に上がり、近代化工業社会が発達した。1850年以降、都市や工業地域が急速に発達し、人口、政治、そして経済活動が集中して、さらに安価なエネルギーの供給に頼ることになった。

さらに2つの技術革新が、この発展に拍車をかけた。1つめは、エネルギーを電気という形で、おそらく送ることができるようになったこと、2つ目は、この電力によって石油とガスと、もしくは蒸気機関のような、安定したエネルギー供給を可能にしたということである。石炭は、それが安定した、そして効率のよいエネルギー供給とされた。

200年ほど前に行われたエネルギー転換は、1つの経済タイプの終わりを意味していた。資源利用における持続可能な経済、つまり今日のエネルギー転換を目指す提案が、今まで成されてきた経済である。しかしこの社会は、同時に、かろうじて、自然安全に大きく左に、大きく不安定さに悩まされていた。こうした状況は、今日考えられている、より発展した形での持続可能性とは異なっている。それは資源を守ることなく、政治や社会に関わる問題だ。持続可能な社会は、政治的権利や政治への参加を確保し、住みよい場所であるための他の特徴を備えていなければならず、1800年の社会はそうではなかった。

また、当時の転換は急激なものではなかった。新しい、工業的な経営方法が確立するまで何十年もかかった。そうこうした工業経営方法に逆らって、策を立てようとするために、技術、経済、社会、そして政治においても多くの改革が必要だったのである。そしてそれは、ように世界の一部でしか成功していない。だから、現代のエネルギー転換が何と瞬で実現せず、長く複雑な過程になりそうである。

2.2 石油と原子力

石炭はその登場以来、埋蔵量がすぐに尽きてしまうのと、繰り返し用に配されました。それと同時に、石炭の使用時に排出される汚染物質にも批判の声が集まってきた。埋蔵量の枯渇、汚染物質への批判、いずれの心配も、第二次世界大戦後の1950年代半ば、石油と、そして何よりも原子力が、クリーンで、無限に見極めるエネルギー源を提供するまで、続いたのである。

（Muller 1990; Radkau 1978）。

石油は、19世紀の終わりにはすでに工業的に生産されていて、その後、世界中に広まった。西ドイツでは石油が最も重要な資源となったのは1945年以降で、化学工業や、発電や、個人家の暖房や、そしてとりわけ自動車の燃料に使用されるようになった。石油と石炭は化学的に見れば共通点が多いが、こうした新分野では、石油の方が使われるようっていった。多くの（製造）製品を製造する近代化学工業の発達とともに、エネルギー消費は著しく伸び、特にその移動性はかえって高まってきた。だから現在エネルギー転換において最も重要な課題の1つは、この移動性を保つ、あるいは他に実用的な選択肢を開発するか（またその両方）ということなのである。

原子力は、石油への転換よりもはるかに大きな注目を集め、一般的の人々も政府も、ほとんど無限大の期待を抱いた。1955年、西ドイツ連邦政府はプラン・ヨーゼフ・シュトラウスの下に原子力担当部門を設置し、1956年にはSDPが「アトム計画（Atompflan》を採択・宣言した。「新しい時代が始まった。制御される核分裂とそこから得られる原子力が、人類の新しい時代の到来を告げている。」（中略）新しいエネルギー源がもたらす繁栄（中略）、人類すべてに対して利益となるだろう（Bruggemeier 2014：228; Brandt 1997）。

西ドイツ連邦政府は、他の国々に技術的に追いつけ、原子力研究の予算を増やさなければならなかった。工業界は、炭素などからの「なぜからの愛着」のため新しい技術を取り入れようとして、未然で非難された。

こうした意図は、当時、一般的だった。原子炉は電力を供給し、海水を脱塩し、砂漠を肥沃な土地に、寒い北国の温室を温め、乾燥地帯を灌漑するために川の流れをそっくり変えるはずだった。それより小規模なレベルでは鉱山や、潜水艦や、鉄道や、さらに自動車まで動かせるはずだった。ただしこれは、完全に問題があるだろう。より詳細な計画書によれば、必要に10トンの防護シールドが必要だったという。

原子力は、クリーンで安いで、かつ、何の心配も要らない無尽蔵のエネルギーを約束するはずだ。数えきれないほどのジャーナリストや作家や政治家が、こうした立場を取った。原子力は、一般大衆からも支持された。自然保全や環境保全に関する議論でも、原子力は擁護された。SDPのアトム計画は、原子力のおかげで「石炭の過剰採掘」と、炭素の採掘による景観の損傷を避けることができた。バイエルン州自然保全全般担当オフィス・クラウスは、1960年の報告書「原子力時代の水力と自然保全」で、このような意見を述べている。この中でクラウスは、「一部の科学者や政治家が、市民の中には、原子力に起因する危険を心配する人もいる」ことを認識しながら、そうした心配は制限的であり、だからもしくは危険であると述べた。薬を選び出すことある。それに比べて、原子力工程や原子力発電所建設における進歩は、有益な選択肢を与えてくれた。

この「僅かな瞬間（Sternstunde）」を有効に利用すべきである、というのはクラウスの主張だった（Kraus 1960: 34）。

メディアの報道は、ほとんどすべて肯定的だった。だが、表向
きでない部分での議論はもっと紛糾していた。原子力の使用は核兵器の脅威を思わせたので、なおさらである。このため平和運動と反核運動は、当時から互いに強く結託していた。1951年から1952年にかけて、最初の原子力発電所の建設用地としてカールスルーケ、カルル、ユーリヒに検討が行われた時には、激しい議論が巻き起こった。カールスルーケでは住民が裁判所に出かけ、憲法で保障された権利である生命と身体の安全が脅かされていると訴え、明らかに住民として安全上の問題点について疑問を投げかけた。この訴えは大きな注目を集め、全国からさまざまな意見が寄せられた。だがそのほとんどは新しいエネルギーに好意的だった。1956年11月付「スドールクリ」紙は訴えた住民たちを「原子力発電所を弾丸で攻撃しようとしている」田舎のトラブルメーカーと呼んだ（Radkau 1978: 441）。

1973年の石油危機が、原子力へのエネルギー転換を後押しした。西ドイツがアラブ諸国に大きく依存していることが明らかになったからである。エネルギー需要がますます増える中、どうやる石油の蓄えが尽きそうだったということで、当時のヘルムート・シュミット財務相は、エネルギー不足が起きるかもしれないと警告、「これはさらなる経済的成長、産業性の向上、そして冷戦からおそらくは（中略）雇用の確保にとって最大の助けである」と語った。原子力産業界はこれに同調、2000年までに一次エネルギー需要の50バーセントを原子力で補うするようなことを提案した。そしてそのために、さらに35の原子力発電所を建設して電力補給を確保するとした。これらの発電所は発電だけではなく、プロセス熱を化学産業に供給するとともに、石油やその他の石油製品を地元の炭素から抽出することもできるという（Bruggemeier 2014: 316）。

石炭会社ルールコールと炭鉱業者組合ベルクウアは、斜陽となった石炭産業に新しい可能性を提供してくれるこの提案に、すぐに熱心に応じた。それまで原子力に批判的だったメディアも、今ではその利点を強調することになった。1973年、「デア・シュピゲル」誌は原子力発電所の数を倍にすると述べる。また、ドイツ新聞と「ハンデルスブラット」紙は、石油に替わって電力供給を確保できるのは原子力だけだと主張した（Schaaf 2002: 56）。このため、キリスト教民主同盟（CDU）率いるバーデン＝ヴュルテンベルク州政府は、住民の意図に従い、1973年の夏、ヴィール・アム・カイゼンシュトゥールに原子力発電所を建設することを決定したのだった。

2.3 原子力と石油依存

ヴィールで原子力発電所に反対した人たちは、地元のブドウ栽培と住民の健康を心配していたが、初めのうちは原子力が根本的に否定していたわけではなかった。そのため州政府にも通常の工業計画に同程度の条件を求めていただけで、計画は予定通り進められた。だがまもなく原子力に注目が集まるようになると、地元住民の抗議の声が強まった。主婦、農家、ワイン製造業者など、普段はこうした業界の粉々であり目立たないような人々が、ヴィールでは先頭に立ったのである。これによりプライバクの学生や科学者が加わって知識を提供し、原子力反対の主張にしっかりととした基盤を与えた。こうして少しずつ、普遍では考えられないほど大きな輪ができ、ヴィールでの抗議運動の成功に決定的な貢献をしたのである。また同じ重要な役割を果たしたのは、アハルト＝エッペラーをはじめとするバーデン＝ヴュルテンベルク州の社会民主党の政治家たちで、すでに1975年には、原子力拡散に対する懸念を発表した。論識は過激化し、反対派は、発電所建設予定地を占拠するなど目立った抗議行動に結びついた。裁判所が建設中止を命じ、反対運動がさらに盛り上がると、全国メディアもこの紛争に関与を示した。だがデア・シュピゲルがヴィールについて詳しく取り上げたのは、1975年、紛争が始まって2年近く経ってからだった（Rucht 2008）。

その間、原子力問題は、西ドイツ各地で大規模な住民運動を引き起こすようになっていた。まず多くの個人や団体が抗議運動に参加、1980年には緑の党が発足した。緑の党が台頭したのは、かなりの部分、社会民主党政権が束縛していた原子力拡張のおかげである。緑の党のこうした姿勢はさらに多くの支持を集めていったが、原子力に賛成する人も相変わらず多く、その数は1986年4月26日にチェルノブイリでの原子炉爆発事故の後も変わらなかった。西ドイツ住民のおよそ半分にとっては、この惨事から導かれる結論は明らかだったー原子力拡張である。社会民主党は1986年、ニュルンベルクで開かれた党大会で10年以上の原子力拡張を決定、これをきっかけに緑の党との距離を縮めた。一方で、キリスト教民主同盟、キリスト教社会同盟（CDU/CSU）と自由民主党（FDP）は、原子力に再び賛成し、西ドイツ住民の残り半分にアピールした。

こうしたことを背景に、再びエネルギー転換（初めて、広く使われるようになった概念）を求める声が高まった。それは、単に原子力拡張のためだけではなく、石油備蓄がまますなく底をつくかもしれないという懸念も、同じように深刻だったのだが。1972年、ローマクラブの報告書は経済成長の限界、特に石油の埋蔵量が減っていることを指摘、世界中で話題になった。報じた数の個人や組織と並んで、フライブルクにあるエコ研究所もこの議論に加わった。1980年に発表された研究では、最も深刻な問題として来たるべき「有効なエネルギー源としての石油の消滅」（Krause et al. 1980: 13）を挙げ、早期のエネルギー転換を呼びかけている。この中で研究者は、効率的なエネルギー利用、経済成長とエネルギー需要の分離（デカップリング）など、今日なお議論されているような方策もいくつか提案した。そして再生可能エネルギーの利用をさらに奨励し、2030年までに、エネルギー需要の半分を満たすようにすべきだとした。このように研究所では、エネルギー源の配分について当時の常識よりもも楽観的な評価をしたが、同時にエネルギー需要のうちの半分は石炭で賄わなければならないと強調した。報告書は、将来は「石炭と太陽光によってエネルギーを自給することになるだろう」（Krause et al. 1980: 39）としている。

他にも多くの研究が発表され原子力拡張を訴えると同時に、建物の断熱構造化、新しい技術を用いたエネルギーよのより効率的な利用や、経済成長とエネルギー消費の分離といった対策を提案し、いずれも大きな効果が期待されたが、結局は石炭が、将来中心的な役割を果たすと考えられていった。この主張の
よい例として当時盛んに引き合いに出されたのは、1986年に出版されたフォルカー・ハウフの『Energiewende（エネルギー転換）』である。ハウフは1978年から1982年までシュミット政権において大臣を務め、1983年からは国連の「環境と開発に関する世界委員会」のメンバーだった。ブルントランド委員会と呼ばれたこの委員会は、持続可能性に関して、今日に至るまで最も重要な報告書をまとめている。ハウフは著書の中で、その副題のとおり「怒りから改革へ」の道を示そうとして、原子力廃廃のための実際的な段階的対策をいくつか提案している。

ハウフはまず、どんな資源でもよりよく使い方こそがそれを最良のエネルギー源にするのだと述べ、その後で将来のエネルギー源として「クリーンな石炭」を挙げている。ハウフの見解には、理由がある。石炭は、窒素酸化物や硫化物などの汚染物質を排出するため長いこと非難され、1980年代半ばには酸性雨の原因として厳しく規制されていたのだが、こうした排出物を大幅に削減できる効果的な技術がつまった。ハウフが「クリーンな石炭」について述べ、これが最も重要な意味を持つというのは、そういうわけだったのである（Hauff 1986: 95）。

その数年前、エアハルト・エッブラが似たような立場を取っていた。エッブラは社会民主党の中でも、エネルギー転換を最初に提唱した1人で、この分野の先駆者と見なされている。すでに1979年6月には、大作の論文の中で、「必要な調整と変更を行えば、原子力廃廃は何の深刻問題も引き起こさない」と述べている。そして、「エネルギー供給を著しく増やすことさえ可能であり、それは現状の消費量の2倍にあたる石炭が必要になるだろう」と付け加えた（Eppler 1979）。これは問題になりかねなかった。エッブラは明らかに、二酸化炭素の排出量を増やすことを言っていただからだ。だが石油依存の軽減を原子力廃廃と同じくらい重要と考えていたエッブラにとって、そのための石炭利用は許容できるものであり、特に「石炭を原料とした流動床燃焼技術（FBC）によるクリーン火力発電所」が可能になってからは尚更だった。エッブラはまた、分散型の天然ガス発電所にも大きな期待を寄せていた。だが太陽光エネルギーについては、触れられてはいたもののほとんど問題にしていた。

太陽光エネルギーの可能性については、1980年代全体を通じて、繰り返し話し合われてきた。だがこの選択肢については、推進派でも慎重な姿勢を崩さなかった（Hauff 1986; Krause et al. 1980）。だから今日よく言われるように、当時、再生可能エネルギーへ移行する機会があったのに逃したと考えるのは間違いである。当時は、石炭の利用の方が現実的と考えられるのがはるかに多く、汚染物質を大幅に削減する技術が可能になってからは特にそうだったのだ。ただしこうした技術も当時（今日でもそうだ）が、二酸化炭素の排出までは防げなかった。だが二酸化炭素による地球温暖化は、まだそれほど重要的な問題とは考えられていなかった。原子力から脱却し、枯渇しつつある石油資源への依存を止めることの方が、ずっと重要視されていたのである。
3 現代におけるエネルギー転換

3.1 目標

今日のエネルギー転換の目標ははっきりと、簡潔に述べることができるもの。原子力発電の実現、化石エネルギーの再生可能エネルギーへの転換、そして気候に有害なガスの排出削減である。これためドイツでは、最後の原子力発電所を2022年までに廃止することが決まっている。さらに、2050年までに、消費電力の80パーセントを再生可能エネルギーで賄い、一次エネルギー消費量を2008年に比べて50パーセント削減、温室ガス排出は1990年に比べて95パーセント削減する計画になっている（ドイツ連邦経済エネルギー省 BMWi 2014c）。

壮大な計画だが、目立った成果がすでに上がており、実現可能と考えられている。2000年から2014年の間だけでも、再生可能エネルギーの総電力消費量に占める割合は、6.2パーセントからほとんど26パーセントにまで上昇した。このくらいの速いペースで利用が伸び続けなければ、再生可能エネルギーは、まず原子力に、続いて化石エネルギーに取って替わることができるだろう。再生可能エネルギーが排出する二酸化炭素量は非常に低レベルなので、排気されるガスは大幅に減少する。つまりこの意欲的なゴールの実現は、子年の伸びを維持できるかどうかにかかっているのだ（ドイツ連邦経済エネルギー省 BMWi 2014b）。

だが、これは簡単なことではない。この伸びは、単なる目標とはいえ、技術の進歩が必要である。エネルギー転換が大きな課題や、矛盾や、摩擦の原因になることも証明したのだ。これから本論で追究していくのは、まさにこうした点である。自社の影響力が弱まるのを恐れる他の電力会社とだけでなく、違った再生可能エネルギー同士の関係ににも摩擦が起きている。太陽光、風力、バイオマスの発電コストはそれぞれ違うし、供給安定性も違う。だから、それぞれこの程度の拡大をすべきか、判断する必要がある。一方、さらなる拡大の代わりに、エネルギーの消費を減らす、あるいは経済成長の新しい形を発展させることも可能である。

こうしたさまざまな可能性は、本来ならば互いに矛盾することなく組み合わせることができるもの。だが実際には、いろいろ意味決定をして、必要なコストを避けることが必要になる。さらにエネルギー転換には、始めの頃よりもはるかに大きな期待が集まっている。石油やガスの輸入依存度の軽減、雇用の創出、経済構造が脆弱な地域の活性化、エネルギー利用のさらなる効率化、自然にやさしい近代化の促進、その他数えきれないほどの期待の実現。このように期待することができるならば、摩擦が生じることは明らかで、紛れてくるさまざまな利害や目的を見極めることも難しくなる。

もっと深刻に考える人もいる。エネルギー転換の先駆者の1人ハルマン・シェアは、今回の転換を「工業化時代を始まって以来の大かかわりな経済構造改革」と考える。シェアにとってエネルギー転換は、「文明の歴史において、重大な意味を持つものであり、人類の生活や経済活動のあり方を根本的に変える可能性がある」と（Scheer 2010: 23, 28）。さらにここまで大袈裟な見方は、少数派である。だがエネルギー転換には単なる風力タービンや太陽光パネルの設置以上の意味があることは、シェアと目標を異にしている人たちはも明らかだろう。目標の達成には、既存のエネルギーシステムを完全に作り替えなければならず、大変な苦労と長年にわたる忍耐が必要になる。だからドイツ政府は、これは何か世代にもわたる課題になる。つまり大切なのは決定をし、それに応じて修正するべきだと考えているのだろう。そしてそのプロセスは、非常に小さな1歩から始まった。現代のエネルギー転換は、工業化が始まった以来、どんどん重要性を失っていた再生可能エネルギーの利用割合を、復活させることから始まったのである。

3.2 ドイツにおける「再生可能エネルギー法（EEG）」ーその背景と歴史

1990年、ドイツの再生可能エネルギーによる発電は、総発電量のわずか3.1パーセントだったが（図1参照）。量にして、170億1000万キロワットアワーである。その割合は、2012年までに800パーセント近く増加するー1360億1000万キロワットアワーが再生可能エネルギーで発電されたのである。1990年代の発電
所は水力が群を抜いてトップで、太陽光と風力はコストがかかり過ぎるためほとんど利用されていなかった。だが風車は、長いこと盛んに利用されてきた。やがて小さなモーターや送電システムの登場に取って代わられたものの、1895年にはドイツ各地に1万8000基ほどの風車が設置されていたのである。1930年代には、風力エネルギーが見直されることもあったようだ。

エネルギー分野における先駆者でもある発明家のヘルマン・ホーネフは、巨大な発電塔を立てて安価な電力を作ろうとした（Heymann 1990: chap. 6）。高さ430メートル、直径60ないし160メートルのタービンで、ベルリンのラジオタ（高さ150メートル）よりも高い。ホーネフは、上空の風を使って発電するために、そのくらいの高さが必要だと信じていた。そして費用が非常に安かっとのことで、農家は地中加温装置を設置して年3回から4回収穫できると主張した。今日ではとても多く思える計画だが、当時は、かなりの支持を集めた。だがやがて正確な算出が出て、この計画は経済事であるが立証される。巨大な塔は解決不可能な電波障害を引き起こし、建設と運用には法外な費用がかかるという。

そこで唯一有望な解決策として残ったのが水力発電だったのだが、環境保護主義者の間での評価は悪かった。ダムが景観に深刻な影響を及ぼす——今日、揚水プラントの建設に対するその同じ苦情である。これのための水力発電の割合はあまり伸びなかったが、それでも1990年には、総発電量の3パーセントを占めていた。この項は、他の再生可能エネルギーはほとんど始まっていなかった。これは費用の問題だけでなく電力会社の姿勢のせいでもある。自ら行動を起こすつもりはまったくなく、再生可能エネルギーによる電力を買い取る気もなかった。こうした障害が1991年、「再生可能エネルギーの公共送電網への送り込みに関する法律（StrEG 電力供給法）」によって克服されることになった。この法律は2つ新しい点がある。今後電力供給者は再生可能エネルギーによる電力を購入し、しかも定められた最低価格を支払わなければならないのだ。これは風力と水力だけでなく、比較的安価で発電できるバイオマス発電所にも利益をもたらした。これに対して太陽光発電は、まだまだ費用がかかりすぎ、隣間産業の域を出ていなかった。そして再生可能エネルギー全体の市場におけるシェアも、わずかずつしか伸びなかったのである。

3.3 原子力廃棄IおよびII

この状況は、1998年の選挙で、社会民主党と緑の党の連合が勝利したでようやく変わり始めた。連合はエネルギー転換を最重課題に据え、2つの目標を掲げた。原子力廃棄と再生可能エネルギーの普及である。そしてその実現に向けて2000年、風力、太陽光、バイオマス、地熱、水力を対象とした「再生可能エネルギー法（EEG）」を採択した。この法律と、電力の最低購入量や価格保証を定めており、一日、それまで電力供給法とあまり変わらないように考えた。だがその最低価格はそれまでよろずっと高く、特に太陽光エネルギーについては高かった。さらにこの価格は20年間適用され、長期の収入を提供することで、再生可能エネルギーが期待された成長を遂げられるようにしていた。

同時に、政府は電力会社との間で原子力廃棄に合意し、2002年、原子力法を改正した。これにより、各原子力発電所が発電できる量を制限し、その稼働を2021年までとした。こうして緑の党や多くの環境保護団体は主要な要求を実現することができたが、それはまたに社会民主党も同じ目標を姫、必要な過半数の議席を確保できたからである——しかしこれも2009年10月の選挙で、ドイツキリスト教民主同盟・キリスト教社会同盟
（CDU/CSU）、そして自由民主党（FDP）の連合が勝利したことで状況が変わった。新政府は原子力廃棄の支持を続けたが、原子力発電所の稼働期間は延長されたので、反対派からも一般市民からも激しい抗議の声が上がった。社会民主党、緑の党、左派勢力、それに9つの州政府は、この件をドイツ連邦憲法裁判所に訴えようとしたが、わずか数か月後、その必要はなくなった。状況がふたたび、今度はは今度を変えたからだ。2011年3月11日、25年前のテルノプリイ発生、最悪の原子力事故が福島で起こったのだった。

地震とそれに続く津波で、原子力発電所で炉心溶融が起こった。安全対策は役に立たず、大量の放射性物質が海に流出、地球規模に拡散する恐れも出てきた。世界中で、とりわけ地震の津波の相乗作用でテルノプリイのような原子炉爆発が起きることを心配したが、幸いそれは起きずに済んだ。犠牲者の数も、テルノプリイに比べればかなり少なかった。だが、長期にわたる影響について信頼できる予測はない。アメリカの科学者らは、がんによる死亡数は15万人から13000人の間になるだろうと見ている（『週刊ドイツ新聞』Süddeutsche Zeitung 2012）。一方、津波による被害は甚大で、およそ1万6000人という膨大な数の死者が出たが、津波については、ドイツのメディアのコメントははかに少なかった。

ともかく、衝撃は大きかった。アングラ・メルケル首相率いるドイツ連邦政府は、この状況を受けて対策に乗り出す。原子力発電を一時停止し、すべての原子力発電所で安全性の点検を実施、最も古い7か所をただちに閉鎖して、向こう3カ月間再開を避けさせることにした。続いて政府は、新しい原子力法を採択、それまでに認可されていた延長を無効にした。稼働中の17基の8基の原子力発電所の稼働許可はまもなく期限が切れる予定で、その他の原子力発電所も、定められたスケジュールに従って、2022年までには送電を停止しなければならない。この法律は、2002年に社会民主党と緑の党の連合政権が入閣した規制に似ていたが、当時よりも電力会社に対して厳しく介入し、原子力廃棄に向けての手続を細かく規定、その最終期限を2022年2月までに設けている。前回の法律とは違い、原子力発電所の事業者の合意なしで、原子力廃棄が決定されたのである。

エネルギー転換の2つの目標のうちの1つ原子力廃棄は、こうして実現した。同時に、再生可能エネルギーの開発も大きな進歩を遂げており、保守自由連合政権も支援を続けている。2013年、再生可能エネルギーはドイツ国内の電力消費量の25.3パーセントを占めた。この数字は、再生可能エネルギー法の採択時に4倍であり、1億458万トンの二酸化炭素の排出を抑制できた（ドイツ連邦経済エネルギー省 BMWi 2014a: 32）。ドイツ環境省、関連企業、環境保護団体、そして各政党が、この法律が、再生可能エネルギーを促進しエネルギー転換を始めるための最も有効な手段として世界中で通用する、と絶賛した。図2を見れば、それももっともだとかなるだろう。また一般国民からも、広い支持が得られた。2014年の調査では、回答者の90%が再生可能エネルギーのより広い普及を「大事である」と答えている（AEE 2014）。世界的にも多くの国々が同じような法律の導入を計画、あるいはすでに実現して
いる。この傾向は、特に再生可能エネルギーによる電力の価格が（少なくともエネルギー取引市場において）下降し始めている。再生可能エネルギーによる電力が、従来の方法による電力より安くなる場合もあり、世の中が正しい方向に動いていることを示している。

この判断は、基本的な部分では正しい。だが、実際の状況はかなり複雑だ。それは、再生可能エネルギーが二重三文で取引されるようになったのを理解しなければならない。これは再生可能エネルギー法の結びとして、エネルギー市場全体が数多くの問題を取り巻いている。想定外の出来事は他にもいろいろあったが、再生可能エネルギーがそれほど重要な位置を占めていない現在問題がない。ところが、かなりの量の電力、熱、ガス、ガソリンが供給されるようになって、明らかにしなければならない点が多く出ているのである。ドイツにはどの再生可能エネルギー源が特に適している。優先的に支援されるべきだろうか？太陽光エネルギー、風力、水力、地熱、それともバイオマス？こうしたエネルギー源で、おもしろ電気や熱を生産するべきか、それともガスやガソリンも持てるべきだろうか？供給はできるだけ地方分権化するべきだろうか。それとも、ヨーロッパ全体とは言わないまでも、全国レベルでの電力システムが必要だろうか？石炭や褐炭を使用する火力発電所は、どれくらい長く稼働するべきだろうか？再生可能エネルギーの開発に集中し続けるべきだろうか？それとも、エネルギーのより効率のよい利用法や高い変熱性に着目した方がよいだろうか？

これらは、エネルギーシステムを根本的に変える際、必ず出てくる問題の一つである。その一方で、すぐに適用可能な非常に優れた解決策も存在しており、近未来に改善加られてい る。だが工業化以前からの残存し、現在再び浮上してきた問題もある。1つは、再生可能エネルギーの天候や季節の依存で、これがエネルギーシステムを脆弱なものにしている。2つ目は、エネルギー貯蔵の困難さである。いずれの点も、特に供給確保にあたっては、非常に大きな影響があるのだ。

図3 石油価格の推移（2002-2014年）

プレトレ過ブルあたりの月別平均価格（ドル）

出典：ドイツ再生政治センタ（BPB 2015）

3.4 再生可能エネルギー法の施行

3.4.1 供給の確保

石炭、石油、ガス

石炭、そしてその後に石油が登場して以来、備蓄がまるでなくて尽 きるのはと絶えず心配されてきた。こうした声は1970年代に ローマクラブの報告が出ると、さらに強まる。当時のヘルムー ト・シュミット首相は、まもなくエネルギー不足になると警告、 フライブルクにあるエコ研究所をはじめ大勢の専門家が一斉 にこの見方に賛同した。こうした危惧は、現在のエネルギー転 換においても重要な意味を持っており、ドイツ政府は石油およ びガス資源の有効性を、エネルギーの輸入依存と並んで、エネ ルギー転換が不可欠である主要な理由として挙げている。

基本的にはこうした心配は、今も昔も、もっともなことだ。遠か れ是化石エネルギー源が尽きるのは間違いない。だが、そ う判断するだけでは何も信からない。より重要なことは、資源が 実際的に枯渇し価格が上昇するのかいつなのか、予測することで ある。そしてこれは、現在の成り行きからすると、明らかに非常 に難しい。2000年に再生可能エネルギー法が採択された時、世 界のエネルギー消費量と石油および天然ガスの価格は激的に 上昇していた。消費量のさらなる増加は確実と思われ、供給確 保のためだけでも、再生可能エネルギーへの転換が必要だと思う わけ。化石燃料の価格上昇も続くと考えられ、再生可能エネ ルギーという選択肢は、有効なだけでなくコストの面でも安 くなると予想されたのである。始めのうちは、そのとおり だった。しかし2011年以降、肝心の石油の価格はほとんど上が らないどころか、ついには大幅に下落した（図3参照）。これは 石炭についても同じだった。これほど低い値は長くは続かない だろうが、いつ、どの程度まで回復するか予測するのは難しい。 世界中のどこでも、政治家たちはエネルギーの価値が下がるの
変動と保存

再生可能エネルギーは基本的に風と日光に依存しており、必然的にかなりの変動がある。日照時間や風速によって発電量が変わることは避けられない。2013年度にはドイツ国内における太陽光発電装置の平均稼働時間は、887時間だった（総発電時間の10パーセント）。風力発電所の平均稼働時間は総発電時間の18パーセントと、太陽光発電よりもずっとよい数字で、特に風の強いシュレースヴィヒ＝ホルシュタイン州では22パーセントに達した（ドイツ連邦エネルギー・水道事業連盟 BDEW 2015: 25f）。風力や太陽光による設備容量が原子力発電所のそれよりも大きいのだから、これでは基本的にはよいニュースである。ただ、誤解しないといけない。こうした設備容量は原則的には可能というわけではない。実際にはあまり実現されていないのだ。沖縄では、風力タービンの設備総発電量が容量50パーセントまで上がることもあるので連続供給も容易で、さらなる設備建設が計画されている。だが技術的な問題が多くコストが多くなりため、今のところ洋上風力発電は総発電量のわずか1パーセントで（ドイツ連邦エネルギー・水道事業連盟 BDEW 2014: 11）、もっと大きな役割を担うにはまだ時間がかかる。

自然にも、こうした変動の中でうまくバランスが取れるよう貢献してくれる。だから太陽光発電システムはエネルギー需要が特に高い夏、しかも正午に最もよく稼働する。冬のそれ反対で、太陽光発電がまったくできないこともあるのだが、風が強いのであるまくことができるので、電気自動車や家庭用の電気製品の需要が増加することもある。ただ、安定した供給は望ましいので、2012年の太陽光と風力による発電量は、特に日本の場合は1億2万2121メガワットにも達せずとも、条件の悪い日にはこの数字の5パーセントをやや上回る程度だった（独占委員会 Monopolkommission 2013: 185）。日照や風の条件が非常に安定している他国からの供給を受けられる、非常に助かるだろう。非常に壮大な計画「デゼルテック」は、サハラ砂漠のまん中で発電した電力をヨーロッパまで送るはずだった。だが技術的、経済的、政策的な問題が多く、かなり遠い将来まで延期させざるを得なくなった。だがこうした後退はあっても、エネルギー転換にはヨーロッパ全体の協力が必要なことに変わりはない（3-5参照）。

もし熱電池が貯めてあるのであれば、こうした考察も必要なかったろう。熱を貯蔵できる可能性はあっても限られており、コストも非常に高く、目減りも多い。1つのエネルギーの形態を変換しようとすれば必ず目減りが生じるが、貯蔵も例外ではないのだ。電気の場合は、それはいっそうひどい。他の方法はさらに効率を悪く、さらに費用がかかり、さらに目減りの多いので、発電された電気はほんの少量、わずかな時間しか貯蔵できない。貯めた水を必要な時に放水して発電する揚水発電所については、かなりの議論が行われていた。だがこうした発電所は自然や景観に甚大な侵害を与えるうえ、発電量も限られたもので、わずか数時間で水がなくなってしまう。短期間の需要調節としてはよいかもしれないが、恒久的な供給源にならない。

効率のよいエネルギー貯蔵はきわめて重要なことで、かなり現実離れしたものも含めあらゆる可能性が試されている。深さ1000メートル以上ある廃棄物の亜鉛鉱に実施もある。深さの落差が地表の貯水槽を利用して地下の発電を回すのにぴったりなのだが、まだ大きな技術や費用の問題がある。効率的な電池を作る実験はもとより進めていて、目下、電気自動車に利用されている。だがここにも問題があり、価格が上昇するか、性能が上がるかという問題点を解決するにはまだ難しいのだ。一度、そうしたものが利用可能ならば、新しい可能性が開けるだろう。どんな自動車もそうであるように、電気自動車もほとんどどの時間は走行していないから、そのパッテリをいつか接続して一種の巨大な蓄電システムとして利用することもできる。

電気を熱に変換しようという計画もある。運れられ、こなかった計画のどれかが解決策を見つけるだろう。ともかく今のところは、全般的なエネルギーサイクルを確保できるように多くのエネルギーを蓄える電池その他の装置は、まだでていない。だが、変動がないだけではなく、炭素やガスのようにエネルギーを貯蔵した形で含んでいるので、変動の問題を解決するのに最適な再生可能エネルギー源がある。バイオマスだ。

バイオマス

バイオマスには、動物の排泄物やその他たくさんの汚物など、さまざまな種類の有機物が含まれている。を集めた野菜業や、特に大量のバイオマスを液体燃料という形で産出するので、これを再生可能なエネルギーとして利用すれば、深刻な環境問題の解決に役立つだろう。それから農業や肉食処理から出る廃棄物、家庭や工場から出る有機物などの可燃性を、また鉱山や埋立地から排出されるガスもある。もっともガスは、厳密に言えば再生可能なエネルギーとは言えないが、この他にもさまざまなタイプのバイオマスがある。それそれぞれ特徴的な貯蔵型のエネルギー源となり、必要に応じて利用することができる。

こうした特性のおかげで、利用されているのは既存の廃棄物だけではなく、特に栽培されている。木材に長くとバイオマスとしても栽培され、ペットのように形の燃料が今では目覚
ましい実績を上げている。だが木材は成長が遅いため、長い目で見なければならない。短期間で使えるものとしては、特に優れたエネルギー供給源であるトモロコシが、近未来ますます人気を集めている。トモロコシをはじめバイオマス全般は、エネルギー転換にとってもあらゆる選択肢であるため、高額の補助金によって奨励され続けてきた。年々新しく生まれ変わる本当の意味での再生可能エネルギーであり、電力と熱を供給するだけでなく、ガスやガソリンなど多くの基として役立っている。

このためバイオマスは近年かなりのブームとなっており、再生可能エネルギー全体の60パーセントを少し上回る電力を供給している。その後に次いで遅れて風力（16.1%）、太陽光発電（9.7%）、そして水力（7.2%）が続いているが、他の資源はほとんど利用されていない（図4を参照）。このようにバイオマスの開発は驚くべき成功例なのだが、それはさまざまな変動の影響を避けられたからではない。バイオマスを利用するのはほとんどが中小規模の工房なので、エネルギー供給の分散化と、地域または地方の（あるいは他方の）エネルギーミックスに大きな役割を果たしているのだ。一方でバイオマスの発電効率は高く、その効率が十分である。エネルギーと熱の両方を供給し、非常に効率よく、そして何よりも多くの電力や熱の生成に適している。

こうした将来性にかかわらず、バイオマスによる発電には問題もある。第1に、コストがある。第2に、生産のためには広い土地が必要なので、食糧生産面積を奪ってしまうことになる。

食糧供給が十分なヨーロッパでは問題ないが、いわゆる第3世界の国々では、もし広範囲のしかも多様な穀物が栽培されている土地を高エネルギー作物の栽培に充てることになれば、食糧供給に支障をきたしてしまう。こうした他の作物との競合はヨーロッパでも起きたが、状況は少々違っていた。特にバイオマスに適した作物ということで、トモロコシの大規模な植栽が始まり、大量の肥料と殺虫剤を使用、土壌を汚染して生物多様性を脅かしたのだ。このためバイオマスの活用促進は後退しかったが、一方で、こうした課題を克服するための新しい方法が模索されている。例えば、主に廃棄物を利用して高エネルギー作物の栽培を減らし、常に生態学的基準を守り、そして何より、食糧生産と競合しない他の藻類や植物やバクテリアを利用することなどである。

長い目で見れば、バイオマスはかなりの将来性が見込むんだろう。ただ現在のところは、さまざまな変動の影響を避けれるには別の方法が必要だ。特に効率のよい送電網是非常に重要である。送電網があれば、現在、太陽光や風力や水力を使って特に大量に発電している地域を、発電量が特に少ない地域と結んで、全体的なバランスを調整することができるのである。

送電網

発電所は、電力供給の仕方によって3つのタイプに分類される。ベース電源（発電所）、ミドル電源、ピーク電源である。ほと
図5：陸上における風力発電：地域別の設備容量、発電電力量、価格
（全体に対する割合を%で表す）

出典：ドイツ・エネルギー電力市場調査会（REWE）2014-80

どちら3つタイプの発電所は互いに送電系統によって連結しているが、比較的小規模な場合が多い。昔ながらの発電所は、石灰や石油やガスのようなすでに貯蔵された形のエネルギーを使用するからだが。簡単に言えば、石灰燃料は何百万年もかけて充電され、今、非常に短時間で利用可能な燃料が含まれる発電所に集約される。こうした発電所は通常、発電所の需要があればどこでもできるので、その発電所では電力が供給が補うことができなかったり、一次発電源が故障して危機的状況に陥ったりすることはあるだろう。だが大きな変動というのは例外的なものであり、アクセス可能な距離に稼働できる発電所が十分にある代わりに稼働できれば、簡単に対処できる。

再生可能エネルギーの場合、こうしたことはもっと難しい。発電所は需要のある場所にただ建てるわけではないが、十分な日照と風の強さがなければならならない。言い換えれば、再生可能エネルギーの場合、発電と消費は地理的に離れているのだ。風力エネルギーが主要なドイツでは特に北部や東部で設けられたが、発電の中心地は西部と南部なので、電気はそこまで送られなければならない（図5を参照）。

理屈の上では、工業化以前のように一エネルギー多消費型工場を、再生可能エネルギーが容易に安定して手に入る場所に建てるのは可能である。風の強いドイツ北部には特に条件のよい場所がたくさんあるし、経済構造が脆弱な地方ではそうした開発は萎縮されるだろう。だがそれは南ドイツの州が負担することになるし、問題もかなり多いので、工場移転はあくまでも再評価の対象である。これに対してエネルギー転換については、電力は需要がある場所に送られ、全国どこでも同じくらいの料金で供給されるべきだというコンセンサスがある。結論は明らかだ。それに見合うよう、送電網は効率的でなければならない。

効率性を上げるには、長い電線と十分な数の鋼塔だけでなく、インテリジェント情報システム（スマートグリッド、次世代送電網）といった他のアプローチも必要だ。スマートグリッドは、需要を供給を記録して分配するだけではない。例えば、余剰エネルギーがある時は特にエネルギーを大量に消費する装置を作動させたり、消費をコントロールする（需要負荷の調整）。そのおかげで洗濯機や食洗機は夜間または土日に作動し、適切な
ドイツにおけるエネルギー転換の発展

に断熱された冷蔵倉庫は電源を落とし、アルミニウム浴砲炉も、大量の電力が利用可能な時間になると生産を開始するのだ。

肝心なのは、現在のエネルギーシステムの基本的要素を変えることである。これまでは必要な場所でエネルギーを供給することにはあまり関心を寄せてきた。この原則は今後も守られなければならないが、需要の方を供給に合わせる努力をするべきである。

こうした努力は、適応が絶対でなくなかった工学的以前の世界を思わせる。ただ今日では、効率よいシステムが需要供給バランスを保つための選択肢を数多く提供し、需要に応じるために電力の使用を可能にする必要がある。この分野での夢はふくらむばかり。だが、解決しなければならない難題もある。

消費をコントロールするには、大量の情報収集が必要なので、プライバシーの問題も出てくるのだ。

もう1つの可能性は、地方、地域、あるいは個人レベルでの自給性を高めることだ。太陽光発電、風車タービン、熱電供給システム（CHP）などの装置はさまざまな大きさのものが出回っており、少額（例えば個人消費に）少量の電力を作ることもできる。そうすれば、エネルギー転換の重要な特徴の1つに近づくことができる―エネルギー供給の分散化だ。電力はそれまで大量に電力供給されるものだったが、ますます単一の装置での発電に切り替わりつつある。

一方で、広大な土地に太陽光発電施設を作ったり、大湖原に巨大な風力発電所を建てるったり、互いに連結したようなシステムも登場している。だがこうした施設は未だ発電所の規模の大小にはかかわらない。

ただし電力供給はますます分散化し、安定した供給を確保したければ、さまざまな再生可能エネルギーを組み合わせる必要があるのだ。それには中央サイズではなく、効率がよし、供給の分散化が簡単でできるヒートポンプ、ジョイエネルギーーシステム、バイオガス発電装置、電力貯蔵用電池などが考えられるだろう。

こうした方法は、今のところまだ使用が始まったばかりだが、何より中小サイズのユニットにぴったりである。これに対して、大都市を始め、工場など大量の電力が必要とする場所では、避けられない需要変動の中でバランスを取るために大規模な送電網がこれからの必要となるだろう。それはまた、分散化型発電をする人も当てには、たとえば発電および蓄電の美しいシステムが完成しても、時にはバンク状態になるだろうし、技術的な可能性から考えてもかならず先まで効率性は限られているし費用もあるから、全国規模あるいは全ヨーロッパ規模の電力網と、分散型供給を組み合わせるのは、一部の例外を除いて無意味である。それぞれのくさいシェアを占めるか競争も起きるだろうが、両者は互いに補うものなのだ。分散型供給は、自然変動の影響をまったく受けず、必要な電力を非常に安定して供給できるので、大掛かりな送電網も要らない。そのため当面は、稀で費用のかかる例外であるそうだ。

こうした送電線の必要性については、すでにコンセンサスができている。利益の上から風力タービンは主に北ドイツにあり、南ドイツでは発電量が安定しない太陽光発電設備の方が多いからだ。それゆえ、2022年までしか稼働できない原子力発電所は、南に集中している。また南ドイツの州には、大量の電力を消費する大規模工場があるため、電気をそこまですらなければならない。だが、どのくらい？送電網、特に鉄塔はどの程度の大きさが必要で、どんな経路を通ればいいのか？連邦ネットワーク下に、今後何かの間に、およそ2,800キロメートルの新しい高圧線の建設と、既存の高圧線のうち2,900キロメートルの分の交換が必要だという。さらに、13万5,000から19万3,000キロメートルの新しい配電線の建設と、そうした配電線網のうち2,100から27,500キロメートル分の交換が必要そうだ（ドイツエネルギー機関 Deutsche Energie-Agentur 2012：7）。

これらの数字については意見が分かれる。広く抗議の声が起こっている。それは、誰も自宅の前に鉄塔が建って欲しくないからというだけでなく、実際に需要を安定させるのが難しいからである。もし発電の分散化が進み、エネルギーをもっと効率よく少量使えるようになれば、需要は減り、新しい配電線はそれほど必要なくなるだろう。それに、特にガスなどの化石燃料が長期的にどの役割を果たすのか、はっきりしていないのだ。

化石燃料

これまでのところエネルギー転換で最も大きく変化したのは発電の分野で、2014年現在、再生可能エネルギーによる電力が必要である4分の1を占めている（図4参照）。だがそれは同時に、化石燃料が相変わらず重要な役割を果たしているということだ。送電網の建設が進み、需要と供給がうまく調整されるようになれば、現在、発電量の55パーセントを占める化石燃料の割合も、この数年のうちに減少すると考えられる。だが、たとえ2050年までに再生可能エネルギーによる発電量が期待どおり総発電量の80パーセントに達したとしても、気候がよければ小さな、条件が悪ければ非常に大きな不分水は出るだろう。だから昔ながらの発電所も、基本的な供給のため、そして何より予備として、これからも必要なのである。

将来的には、従来からの発電所も比較的汚染物質の排出が少ない天然ガスで稼働させるのが望ましいが、費用は高くつく。だからこそガスのシェアは下がっているし、イェルシュング天然ガス発電所のような効率がよく環境に優しい発電所も、コストの面から却下され、基本供給には炭素、特に褐炭が使われてているのだ。石炭は、ますます数で閉鎖される南ドイツの原子力発電所に代わることも、面倒は大量に使用されるだろう。だから新しい送電網ができても、おしまいは風力発電所からしては大きく褐炭火力発電所からも電を送ることになる。

交通や生産の分野でも、化石燃料はしばらくの間、いそう重要さを増すだろう。自動車燃料のガソリンや、暖房用の石油やガスは、他のものに替えるのは難しい。だから政府は、化石燃料の代替に電気を熱やガスに変換して利用する方法を開発するため、数多くの研究プロジェクトを含んでいる。ガソリンではなく電気で走る電気自動車は大きな期待が寄せられ、より効率性の高い発電機が発表されている。だがいずれの場合もコストがかかってしまうため、今このところ大きな進歩は見られていない。ここでも問題は費用なのか、また検討はされていない。この分野で話題に上がっている解決策技術的には可能、あるいはもともと実用化できそうなのである。これに対して費用の問題は
後回しにされてきた-2050年までに、すべての発電を再生可能エネルギーで賄えると主張するドイツ連邦環境庁による研究でされそうである（ドイツ連邦環境庁 UBA 2010）。研究で肝心なのは解決策の多様性を提示し、原則的に実行可能かどうかを検討することだから、こうした省略は理解できる。だが実用化できるかどうかとなると、本質的な可能性が左右するのはもちろんのことだ。近年の電気料金値上がりに関する激しい議論を見ればわかるように、同じくらい重要のはそれに伴う費用なのである。

3.5 ヨーロッパ

エネルギー転換には、ヨーロッパ全体の協力が必要である。どこか1の国だけがエネルギー消費を減らし、温室効果ガス排出を抑え、再生可能エネルギー開発しても、気候保護にとってはほとんど意味がない。それなりの効果を得るには、他のヨーロッパ諸国も同じ目標を目指す必要があります。しかもヨーロッパには各地に電力網が張り巡らされているので、避けがたい再生可能エネルギーの変動にもとぞれも影響されない、比較的容易に供給が確保できる。何より、費用の平等な分担のためには協力が必要だ。もし各国が先走って、個人や企業に高価な電気料金を課すとすれば、それはいずれ大きな衝突を引き起こすだろう。

すでに1997年には、当時のEU加盟15か国が、2012年までに温室ガスの排出量を1990年に比べて8パーセント削減することを目標に定めた。2009年には、拡大EUが、「20-20-20 気象エネルギー・ユーディシー」を採択した。これは2020年までに污染物質の排出と総エネルギー消費量を20パーセント削減（図7参照）、再生可能エネルギーの利用も同じだけ増やそうというものだ。そして今日（2015年）、欧州委員会は、さらに高いゴールを目指して“エネルギー連合”の設立を提案した。この目標は、ヨーロッパにおける化石燃料への依存を大幅に減らし、エネルギー供給の安定化を図り、環境に優しい経済成長を促進することで気候を保護しようというものだ。そのために欧州委員会では、エネルギーのいくつかの効率化を図り、再生可能エネルギーのシェアを増やし、二酸化炭素の排出を2030年までに少なくともに40パーセント削減したいとしている（欧州委員会Europäische Kommission 2015）。

この目標を実現するためには、包括的な対策を取らなければならない。たとえば効果的な法律の制定、欧州エネルギー市場の近代化、価格と費用のさらなる透明化、必要なインフラの整備、建物のさらなるエネルギー効率化、乗物への化石燃料の使用削減などだ。このようにヨーロッパは、自らの周辺の現状改善だけでなく、世界的にもエネルギー政策や気候保護における主導的な役割を果たそうとしている。こうした体系的な役割は、1997年の決議や2008年の気候協定でも期待されているが、ヨーロッパは工業先進国として特に大量の化石燃料を消費し、貧しい国々より多くの排気ガスを排出していることを考えれば当然のことだろう。

しかし、ヨーロッパの中にも比較的貧しい国々はある。このため気候協定では、ブルガリア、ルーマニア、スロバキアなど、経済的に発展途上国の国々には、絶対に必要な経済成長を果たすため、向こう数年間、排気ガスを増やす権利を与えた。こうした国々の代わりに、ドイツ、デンマーク、イギリスなど特に高い目標を自らに課し、ヨーロッパ全体としての進歩を確保できるようにしているのだ。このようなエネルギーと気候に関しては、共同政策がすでに取られ、エネルギー連合がこれをさらに推進することになっている。だが一方、さまざまな障害も予想されており、各国の間には共通点も多いため、かなりの相違点や利害の不一致もあるからだ（Zachmann 2015）。

対立の最大の原因は、おそらく各国が、基本宣言を大幅に上回る国内エネルギー政策に固執しようとすることだろう。これは一見、各国が互いに押し合うように見えるがそうではなく、国によって削減効果が大きく違うからなのだ。たとえばポーランドでは、電力の80パーセント以上が石炭によ
発電だが、それは石炭産業界で多くの雇用を確保するためである。反対にフランスは原子力発電のシェアが特に大きいが、原子力発電は二酸化炭素をほとんど排出しないという理由で認められている。同じ理由からイギリスは新しい原子力発電所を計画中で、政府は欧州委員会の合意を得たうえで補助金を出している。報道によれば、この補助金は欧州委員会で論議を営んでおり、オーストリアは法的措置を取ると通告したという。そうした措置は、今回に限ってはうまく行くかもしれない。だが、将来のエネルギー政策についてEU加盟各国の間にかなりの食い違いがあるという現実を、変えることはならないだろう（Kurier 2015）。

同じような例は、他にもたくさんある。例えば欧州委員会は天然ガスを共同購入したいと考えており、ポーランドはこれを、ロシアからの供給に依存する必要が減るとして非常に歓迎している。これに対して、ドイツをはじめ他のほとんどのヨーロッパ諸国は、こうした重要な問題については何十年も続いてきた関係を利用して個別に取引をしたいと考えている。再生可能エネルギーの開発には、溶けやすい筋もある。気候保護が目的なら、不必要な出費を避けるため、最もコストの安い場所で再生可能エネルギーを生産すべきだ。だからドイツの再生可能エネルギー法も、南欧での太陽光発電や北欧での風力発電にも適用されるのが望ましい。だがドイツの消費者は（そして政治家たちは）、電気料金が高くなるのはあまり好まないだろう。再生可能エネルギーの推進が気候保護のだけでなく、構造的に不利な地域の工業発展や、経済政策や、雇用の確保のためにもなるということならば尚更である。

もう一つの例では、国としての側面とヨーロッパの一員としての側面が、いかに矛盾しやすいものかよくわかる。ドイツでは、エネルギー集約型工場は再生可能エネルギー賦課金（EEG-Umlage）を大幅に、あるいは全額免除されている。欧州委員会はこれを、免税対象工場への優遇措置であり欧州連合競争法に違反すると見た。この点については激しい論争が行われたが、結果は妥協案に落ち着いた。対象工場にはより厳しい基準が設けられるものの、基本的には引き続き免除を受けてもよいというものだ。純粋に環境保護という立場から見れば、この妥協案は嘘かわしいものかもしれない。だがこの場合も、エネルギー転換に多額の費用をかけることでドイツ企業が国際競争力を失い、外国のライバル企業が免税されている高額な割増をドイツ企業だけが支払うような案を通すのは難しかったろう。

エネルギー連合の意義的な目標がどのくらい達成できるか、どの程度の権限を持った機関になるのかはまだわからない。しかしヨーロッパにはすでに多くの通運基盤がある。何よりも重要なのは、長年にわたり電力の供給変動やポトルネックへの対応を支えてきた送電網だ。再生可能エネルギーの開発に伴って、これはいっそう重要性を増すだろう。エネルギー連合は重要目標の一つとして「2020年までに、各加盟国が既存の発電能力の10パーセントを新エネルギーに転換すること」を進めている（欧州委員会Europäische Kommission 2015: 9）。2030年までの、さらには20パーセントまで引き上げることにしているが、これによって、アルプスや北欧の水力発電による電力の供給を支えているにもかかわらず、南欧の太陽光エネルギーを全ヨーロッパレベルで供給することがずっと容易になる。

この計画に必要な条件は揃っている。すでに稼働している送電網があり、中でも最大のもののは、西はスペインから東はハンガリー、南はギリシャから北はデンマークと、ヨーロッパ大陸を跨いでいる。さらにイギリス、アイルランド、パルト諸国、スカンジナビア諸国には、独自の送電システムがある。これらの国々は、これからの数年間でより密接に連携することだろう。この連携のため、またヨーロッパ送電網の開発全般のためには、欧州委員会は年間2000億ユーロの予算を組んでいる。確実な利益が見込まれるため、個人投資家たちもすでに参入の準備をしている。さらに欧州委員会、ヨーロッパ規模での送電網計画が現実化することでエネルギー転換が容易になるよう、欧州戦略投資基金（EFSI）を通じて支援している。
3.6 対費用効果

エネルギー転換の強さは、フランス・アルトが1994年に行った調査である。「太陽は、決して請求書を送って来ない。太陽と風は無料でエネルギーを供給してくれる」という主張は、今日でも鮮明に耳にす。確かに太陽が自分で請求書を送るわけではないので、厳密に言えばこれは正しい。だが人間が太陽や風の力を借りてエネルギーを生産、輸送し、それを利用したり蓄えたりすれば多かれ少なかれ費用はかかる。

水力あるいは木材や廃棄物を燃やす分には、あまり費用もなくならない。だからこうした再生可能エネルギー源は経済的と言え、政府の補助などまったくあればわずかしか受けず何十年も利用されてきた。他のほとんどの再生可能エネルギーの場合、そうはいかない。エネルギー転換の最初から、再生可能エネルギー源が少なくともしばらくの間は「普通の」電力より高くなることは明らかだった。このため再生可能エネルギー法では、常に市場価格より高い固定価格を保証し、しかもそれを20年間有効としてきた。さらに、はるか20年間の予定で「ディーゼル・オオ・ベイ」制度を導入、再生可能エネルギーの開発が利益を生むようにしたので、大分の予想を上回る大ブームを巻き起こしたのだった。

だが、そのための費用ももそのごい勢いで跳ね上がった。2000年の再生可能エネルギー法採択時に10億ユーロだった補助金は、その後240億ユーロにまで増え、3人家族1世帯につき毎年270ユーロ払わなければならなくなった。これは再生可能エネルギー法に基づく賦課金だけでなく、他の再生可能エネルギーのための分譲金も含まれている（ドイツ連邦エネルギー・水道事業連盟 BDEW 2014a: 6）。この負担も、再生可能エネルギー法が追加分の費用を賄うために電力消費に賦課金を課した結果である（図8参照）。だから、これは補助金ではなくと主張し、国は1セントも払っていないと指摘する人もいる。これは技術的には正しいが何ら重箱の隅をつくような議論だ。政府が国民を騙しているという主張となると、馬鹿馬鹿しくさえある。クラウディア・ケムフェルトによれば、国は以前が支えていた電気料金消费者に押しつけて責任逃げをしていいるという（Kemfert 2013: 77）。だが国庫も、全くでして大儲けしていればというわけではない。政府は、国民から税金その他の形で集めた金額を大変な議論でない。税金であるが、電力消費への賦課金であろうが、排出許可証であろうが同じことだ。結局のところ、費用は納税者もしくは消費者、あるいはその両方が支払うしかないのである。

また石炭と核エネルギーが、今も今もずっと手厚い補助金を
受けていますので事実である。だが発電のための石炭は、昔も今も世界市場で常に安手に入っただから、補助金は石炭産業を促進したいイギリスにおける雇用の確保に使われたのだ（2018年まで継続）。しかし、原子力の場合、補助金は両刃の刃であると、利用を戒める人もいる。国家による出資のおかげで、それなしにはあり得なかったような開発が実現してしまったために、今度はこれらが国民が高い電気料金という形で払わなければならないからだ（FOS 2010b）。

だが、こうした非常に白熱した政治的議論は別として、エネルギー転換のコストを正確に把握し、その後何より査定するのが困難であることは明らかだった。電気代と暖房費とガソリン代の足し算だけでは、あまりに単純だ。同じくらい大企業の外貨費用を、つまり環境と気候への影響を考える上、それほど化学燃料と再生可能エネルギーとの大きな違いがあるのである。

3.6.1 外部費用

化石燃料は、精製から消費に至るまで、二酸化炭素をはじめ多くの汚染物質を排出する。こうした排出物はさまざまな病気を引き起こしたり、広範囲にわたって環境へ影響を及ぼしたりして、広い範囲を発生させる。このような費用は排出者自身ではなく外部の人が負担されるため、「外部費用」と呼ばれるのだが、これはガソリン代や石炭代や電気料金には反映されないので、別途計算しなければならない。ドイツ連邦環境庁（UBA）の調査によれば、石炭及び褐炭による発電の外部費用は1キロワットアワーあたり6セントから8セントである。特に褐炭と無煙炭による汚染は深刻で、外部費用は1キロワットアワーあたり1.5セントから8セントと見られている。一方、比較的汚染物質の排出が少ない天然ガスでは3.9セントと、ずっと低い数値になっている（ドイツ連邦環境庁 UBA 2007: 76, 82）。

再生可能エネルギーの場合も、生産、輸送、設備の設置、あるいは老朽化したソーラーシステムや断熱材などの廃棄にあたっては、外部費用が発生するが、化石燃料の場合よりずっと安さ、特に地球温暖化への影響はずっと少ない。ドイツ連邦環境庁（UBA）の調査では、1キロワットアワーあたり1セント以下である。実際の発電と消費にかかる費用を算出するには、再生可能エネルギーの方がより安さで補助金も少なくて済むというような、外部費用の影響を加味しなければならない。しかし、原子力発電所も二酸化炭素排出量はかなり低いので、環境保護主義者の中には原発を支持する人もいる。しかも原発発電はさわめて安価だった。だが、これは商業的な計算でしかない。実際には、原子力発電所はかなりの外部費用を生んでいる。それは莫大な費用がかかり最終処分場や、老朽化した発電所の解体や、事故の危険性をめぐる現在の議論が示すとおりである（FOS 2010b）。

外部費用の考え、実際に関わる費用算出に加味することとは大切だ。しかし実際には、この問題についてさまざまな調査が行われてきたにもかかわらず、なかなか難しい。外部費用の算出は推定によるものなので、可能性の予測と被害の程度が大幅に違うのは明らかなのである。それにもう1つ、ないがしろにできない問題がある。こうした費用を考慮してエネルギー価格を定めるには、国際的なコンセンサスが必要だということだ。我々が独自にエネルギー価格を決めることもできる。

こうした計画は、今のところ、まだ成果が出ていない。許可証の価格は上がっているか、実質的に無価値になるほど下がってしまったから（图9参照）。なお、重要は2008年の世界的な経済危機のため、工場生産が落ち込んだこと。その結果、二酸化炭素の排出量は減り、許可証の価格も現在（2013）のよう二酸化炭素1トンあたり5ユーロと、もはや何の刺激にもならないほど下がってしまったのだ。さらに状況を悪化したのは、産業界の負担を軽減しようと、最初に無理に許可証が配られたことだ。もし望んだよりの効果を得たければ、価格は60ユーロ以上でなくてはならない。だが、言うは易し、行うは難しくある。行政官は、産業界や、売上げや働き口の心配をする大勢の有権者が圧力を受けながらより高い価格を設定しなければならない。このため価値はおそらくゆっくりと進み、外部費用や環境汚染は当分大した意味を持たないだろう。

このことは、エネルギー転換にとっては妨げになる。環境を守ろうとする努力がさらなる支出を生み、それが一切外部費用の場と反対に一電気料金に直接打撃を与え、引き上げてしまうだろう。こうした結果になることは、再生可能エネルギー法の採択から気付かれていたが、その時期では、出費も次第に減ってまもなく大したことではないと考えられていたのだった。

3.6.2 再生可能エネルギー賦課金（EEG-UMLAGE）と市場価格

2000年の再生可能エネルギー法による保証価格の設定は、一時的な調整の予定だった。これは元金割れ覚悟のいわゆるノックオン投資で、再生可能エネルギーへの需要を増やし、調査研究を促進し、生産コストをより安くてくれればはずだった。石油、石炭、ガスの価格は世界中で上がる考えられていたので、再生可能エネルギーは当初、十分に安価で、さらに安くなると考えられたのだ。だがこうした期待のうち実現したのは、一部だけだった。技術の進歩、効率の向上、生産コストの低下、風力、太陽光、バイオマス発電等、太陽光パネルにおいて実現、特に太陽光発電システムでは自覚してしまった。これからの技術による電力は当初非常に高価で、保証価格は1キロワットアワーあたり74.7セントだった。それに比べて現在（2015年6月）では、小規模施設でわずか12.4セント、大規模施設でもさらに下がってしまっている。ところが大手の予想に反し、化石燃料価格もこれに伴って下がってしまってしまった。
こうした価格の下落は世界的な傾向で、どれほど長く続くかは予測が難しい。エネルギー価格はいつかまた上がるだろうが、現時点ではこの低価格のため保証価格と市場価格との差（差額原価）が予想外に大きくなり、余裕な出費を招いている。さらにドイツでは、再生可能エネルギーが非常に速く普及したため、そのことだけでも電気料金は下がってしまった。買い取り保証のおかげで非常に有利な条件で保証価格が設定されたため、ますます多くの電気が生産され、再生可能エネルギーでも化石燃料でもあらゆる発電による電力が売買されるプライツィヒの市場に出回ったのだ。プライツィヒの欧州エネルギー取引所は2000年、ヨーロッパの電力取引が自由化された時に、競争促進を目的として設立された。その目標は、達成されたと言える。取引価格は始めのうち上がったものの、その後わずか4.2セント（2014年12月）でまで下がってしまった。供給は増えたのに、経済危機で需要が減ったためである。こうした成り行きも、再生可能エネルギーによる電力生産者にとっては、何か問題もなき。20年間、保証価格で買い取ってもらえるからだ。だが保証価格と取引所での市場価格の差が大きくなってしまったことから予想以上の補助金が必要となり、その分、上乗せされた電気料金が上がることになった。

石炭と褐炭による火力発電所も余剰電力の生産に貢献していたので、売電を束縛するためにはノンストップで操業しなければならなかった。こうした発電所は、需要があってもすぐに廃絶できないし、生産量は定められた量しか減らせないので、天然ガス発電所の場合は、とくに簡単で、二酸化炭素の排出も比較的少ないという長所がある。だがここから、いわゆる「メリット・オーダー効果」が現れてくる（図10参照）。エネルギー市場での価格が下がれば、生産コストが市場価格を上回る発電所は1つ1つ閉鎖されていく。最初に影響を受けるのは天然ガス発電所である。比較的コストが高いので、必要性が低くなってきた。驚くべき事例は、ヨーロッパで最も近代的で効率のよい発電所の1つ、イリシングだ。前年、イリシングでは2つのユニットが供給のボルネスクを補うために短期間稼働しただけでも、市場向けの電力はまったく生産しなかった。イリシングはそのために報酬を受け取っただけのもの、主だった契約期間は切れようとしており、事業者側はこれら2ユニットの閉鎖を発表した。
こうした成り行きで恩恵を得るのは石炭、特に褐炭を燃料とする発電所だ。稼働コストが低いため、近年、勢いを盛り返している。同時に褐炭の燃焼はかなりの量の温室効果ガスを発生させるため、エネルギー転換の主要目標を果たしている。緑の党のジモーネ・ベーバーはこれを大きな失敗とさえ言い、グリーンピースをはじめとする環境保護団体もこれに同調している。「石炭を燃やす時代遅れの気候破壊装置がまだ使われているのに、二酸化炭素の排出が少ないテクノロジーのそれで経済が行き詰っているなど、とてもない言いがかりである」（Tagesschau 2015）。この声明が間違いないが、いささか単純化しきすぎではある。とどのつまり現在の状況は再生可能エネルギー法の（意図されなかった）結果であり、緑の党自身も政権を握っていた当時は重要な役割を果たしたのである。緑の党の強い働きかけて成立した同法は、再生可能エネルギーの将来的を高めるため発電所を立てたもので、非常に成功をおさめた。ある意味、成功したわけだが、再生可能エネルギーによル発電量がさらに急速に増加したため価格が下がり、天然ガス発電所も重要性を失い、石炭と褐炭の利用が次第に増えていったのだ。こうした経緯は意図したものではなかったが、これからの化石燃料による発電所が銤体に取り消せないような長期
の製造許可証を持っていながら、指図することも難しい。さらに忘れてはいけないのは、石炭や褐炭による発電所は、ほんの数年前、石油や原子力への依存から脱却するために、世間のコンセンサスを得て建設されたばかりなのだ。

そこで、コストの急激な上昇は予期外で、やはり抑えられるのが難しい。毎年、有能な専門家がさまざまな再生可能エネルギーに新しい保証価格を設定しましたが、風力タービンや太陽光システムやバイオマス発電所のコストが実際にどうなっていくのか、はっきりと見当できないままだった。太陽光発電ブームのような、好ましくない事態も起こる。太陽光システム設置の費用が保証価格よりも低くなると、普通では考えられないほどよい収入源になった。2009年から2012年の間に、さらに75ギガワットの発電能力を持つ設備が次々と設置され、総発電量に占める太陽光発電の割合は急激に大きくなった。しかし、補助金はそれよりもっと速いペースで増加する。2014年には、太陽光発電は利用率が低く、再生可能エネルギーの発電の25.1％でしかなかったのに、補助金の額は全体の49パーセント近くも占めていた（ドイツ連邦エネルギー・水道事業連盟BDEW 2014：69）。

他の再生可能エネルギーへの補助金も増えたため、再生可能エネルギーは2014年改正され、今後の開発のよりよいコンストラクションと、コスト急増の防止を目的にした（改正再生エネルギー法“EEG 2.0”）。この改正法では、それぞれの再生可能エネルギーへの補助率を下げ、発電量の増加を制限し、数年後の開発目標を明らかに設定した。詳細な調整はきわめて複雑で専門家以外には理解不可能だが、4,000件ほどの補助金の再検討を行わなければならないという。これには、例えば既存の風力タービンをより効率のよい新しいものへ交換する場合（リパワリング）も認めるなど、いくぶんかの柔軟性も設けてある。もとより、目的ははっきりしている。新しい規則では、給与の確保だけでなく経済的に確実に賄えるようにしなければならない。

だがこうした規則は、電力備蓄の拡充、送電網の開発、予備発電所の確保のために今後数年間で発生する費用の、一部分しか考えていない。送電網の開発費用は275億ユーロから425億ユーロ（独占委員会 Monopolkommission 2013: 121）、備蓄やスマートメーターなどの費用も算定は難しいが相当額になるだろう。コスト削減のため、補助金の抜本的な見直しと検討されている。こうした補助金は、再生可能エネルギーの対策以来、本質的に価格と賄賦を保証する形で支払われており、それが投資を確保してきた。

こうした保証は、風力タービンやバイオマス発電装置や太陽光パネルや、それを利用した再生可能エネルギー発電だけでなく、電力の輸送、使用、備蓄に必要なインフラ全般にも適用される。このため送電網の事業者にも確実な保証を約束され、その収益が電網の計画次第の住民にも分配されるのだ。利回りはそれでよくないかもしれないが、確かな収入下、他の投資がほとんど利息をもたらさないので比べると魅力的である。すでに同じような措置が、予備として求められ採用を続ける発電所の事業者や、揚水発電所の建設者など、変動への対策として利益確保に貢献しているとする多くの関係者からも求められている。こうして見てみると、イギリス発電所の閉鎖危機はもと、稼働継続のための補助金目当ての策ではないかと思える。

このような保証価格は成功を収めたが、同時に失敗や不必要な支出、そしてより保証による収入が増え続けるのではという期待を生んだ。そこで、エネルギー飛躍の分野での、市場的要素や競争の強化が考慮されている。そのため可能性は、二酸
化炭素の排出を一定量削減したり、一定量の再生可能エネルギーを一定量の発電をしたりした者は、誰でもポイントがもらうというものだった。最高価格で入札した者が契約を結び、太陽光システム、風力タービン、省エネ、その他の方法のうち、どの方法で目標を達成するかを自分で選択する。このアイディアは、排出許可証と同じように魅力的である。だが、これまでのところ確固たる実績はなく、まだ多くの試みや議論が必要だった。どんな変化でも既存の構造や利害に影響する状況では、なおさらである。

再生可能エネルギーの費用を企業界が分担すべきかどうかも、盛んに議論されている。これは工業界すべてというわけではない。2014年に再生可能エネルギー賦課金を全額支払ったのは、製品、商業、サービス業界では全企業だったのに対し、工業界では全企業の96パーセント程度だったからである。問題なのはおよそ2000の工場で、程度の差こそあれ再生可能エネルギー法による賦課金を免除され、エネルギーを転換にまったくあるいはほとんどもがいない。これは「不公」に思える。まして、こうした工場の選定基準は、必ずしも説得力のあるものではないのである。確かに、よく言われるような「無力なゴルフコース」は存在しない。しかしこういった理由もなく、こうした特権を手にしている企業はある。ただし実際に見て、賦課金を免除されているのは、競争に勝ち抜かず安心するエネルギーを依存している企業だ。その中には並大なる企業をも含む。再生可能エネルギーの費用を企業界が分担するため、新たな合意が得られるべきである。ただ企業を巧に消費する企業には過度の負担をかけないためには、節約の可能性もほどほどにしておかなければならなかった。

しかしこうした企業も、エネルギー取引市場、あるいは電力会社から直接電気を購入する他に考えように、電気料金が下がることで恩恵を受けている。個人の家庭でも、電力供給会社を替えれば、ある程度メリットが得られるだろう。だが一般家庭の場合はそんなことをしても大きな節約効果は期待できない。それに、需要が大きな企業の場合、電力会社に対して、ここであれば買い続けるという市場価格を押し通すことができる。だから工業界には、電気料金が下がって得をしていない企業もある。原則的に、こうした利益分は適切な課税や特別関税ですぐに上げることができるかもしれない。だがそれにはかなりの手間と費用があり、ただでさえ複雑なエネルギー転換がますます厄介なものになるだろうし、実現の見込みもほとんどないのだ。

ドイツ各州の間での分配調整も、同じように難し。ドイツ国内の風力タービン、バイオマス発電所、太陽光システムなど施設は平等に配置されているので、エネルギー転換による恩恵は州によって大幅に違うのだ。シュレースヴィヒ・ホールシュタイン州、メクレンブルク＝ファルペンヒルト州、それに北ドイツの各地方では、再生可能エネルギーによる発電で余剰電力を作り、風力タービン建設で雇用を生み出してい。経済的困難を抱えるこれらの地方では、こうした再生可能エネルギーが経済開発プログラムの役割を果たし、エネルギー以外の分野でも雇用も生んでいる。2012年には40万人に新たに雇用されたと言われているが、これは若者割りを考えて考えるべきだろう。エネルギー転換により、例えば昔からの発電所などでは雇用が減るからだ。このプロジェクトの公開に対する関心は、やはり雇用を生みそうに他の場所で使われるべきものでなかったか、検証する必要がある。

2013年、バイエルン州は各州の中で最も多くの余剰電力を生産し、こうした電力転用をはמתיね必要としかない。一方、経済危機に悩むノルトライン＝ヴェストファーレン州では29電力の支援がある、最も大きな進歩を出した。つまり、社会的な再分配も問題になってきた。こうした補助金は、太陽光システムを設置し補助金を受けることができる中流及び上流階級の家庭に利益を与える。これに対し厳しい階層は、この再分配での何の前も得られないばかりか、わずかな収入からより高い電気料金を支払わなければならないのだ。

3.6.3 効率と節約

エネルギー転換に関する議論では、エネルギーをより効率的かつ経済的に使う必要が、当初から強調されてきた。エーブラーは、1979年にその著書の中でそう指摘している。フォルカー・ハウフが始め多くの専門家もこの見解に同調、エネルギーが高価で少ししか使われなかった1980年代に、すでに広まっていった政策を再考した。石油、そして石油の使用が増えるとともに、エネルギー価格は下落した。すでに1990年に化学者クレンス・ヴィンクラーが提案したように、「燃焼の時代」が始まり、化石燃料の「空しい浪費」が始まった。

1973年から74年にかけてのオイルショックで、やっと状況が変化した。石油やその他の資源の価段が上がったため、経済的理由からだけでも消費を減らす意味があった。以来、この分野ではかなりの成果が上がっている（図11列挙）。経済成長は伝統的に資源消費の増加を伴うものだったが、今やこれら2つのプロセスは、ある程度切り離して考えられるようになった。資源消費が停滞あるいは減少としても、経済成長は可能なのである。しかしそれは製品1つ作る際の消費のことで、全体の資源消費はゆるゆるとしか、あるいはまったく減らない。さらに、エネルギー効率が上がると消費者の出費が増加する増加するという、いわゆるリバウンド効果が起きることもある一例は自動車の量、エンジンが省エネになれば販売台数も増え、その分エネルギー資源の消費は増えるのだ。

このため2つの問題を解決しなければならない。1つ目は工業
国における資源の消費量が依然として多すぎるということで、これを大幅に削減しなければならない。この点についてはエルンスト・ウルリヒ・フォン・ヴァイツゼッカーが1995年、他の専門家らとともに新しいロマクラブの報告書を出している（Weizsäcker et al. 1995）。このなかでヴァイツゼッカーは、拡大する生産性を、より少ない労働でより多くを生産するために利用するのを止めるよう訴えた。この目標は、自然や天然資源をより経済的に利用することに置かなければならない。もし天然資源をこれまでより4倍効率的に使うことができれば、使用量は半減し、豊かさは2倍になるだろう。その結果が「ファクター4（4倍の資源生産性）」で、効率革命によって実現できるのである。

エネルギー使用量が減ってきているものの、この目標の達成はまだ先のことだろう。ドイツ連邦政府は、2050年までに一次エネルギーの消費を2008年比50パーセント削減したいとしている。これはかなり意欲的な目標で、政治的手段による達成は再生可能エネルギーの促進よりも難しい。これまでこうした試みは金銭的報酬を手段として行われてきた。建物の断熱性を高めたり、石油の消費を減らしたり、設備を使用したりすると補助金が支給されるのだ。しかし、それには限りある税収入を充てなければならず、税の使用は常に論議の的となる。だから同じく重要なのは、断熱効果の高い建物や、少ない石油消費や、ヒートポンプの設置を義務づける厳しい規則なのである。金銭的な誘因だけでなく、こうした規則を設けることはより大きな節約や効率アップにつながるだろう—しかし、それでは多少ずつしか変わらない。ヴァイツゼッカーらが予想した効率革命ははるか先のことで、エネルギー価格が再び目立って上がりでもしないかぎりは難しいだろう。エネルギー源をはじめ資源をより節約したいと思わせる一番の誘因は、コストが上がることなのである。

3.7 環境適合性

エネルギー転換において生態学的な持続可能性をもたらすものは何かと聞かれれば、答えは簡単だ。一番よいのは、エネルギー（そしてその他の資源について）需要を減らすことであり。次に多い選択肢は、再生可能エネルギーの利用割合を増やすことだ。これらの方法は外的費用を最小限にし、特に温室効果ガスの排出を大幅に削減する。2013年には、太陽光、風力、水力、バイオマスなどの資源のおかげで、温室効果ガスを1億4580万トンも減らすことができた。だがバイオマスには問題がある（ドイツ連邦経済エネルギー省 BMWi 2014: 7）。温室効果ガスを減らすことはできるが、単一栽培が広がり、排水が汚染され、生物多様性が危険に晒されれば、生態学的に大きな損害をもたらす。このため再生可能エネルギー全体としては間違いなく生態学的に優れ成績を上げているものの、これ以上のバイオマス開発は制限されることになった。

再生エネルギーのデータには、健康に関わるものもある。化石及び生物起源エネルギーは温室効果ガスの他にも温室酸化物、微粒子、水銀などの汚染物質を排出する。こうした物質は環境にも人体の健康にもよくない影響を及ぼすので、排出は極力抑えなければならない。さらに気候変動一極端な天候の増加以上のものに種の多様性や生息地が失われる可能性がある一方、さらなる再生可能エネルギーの開発も自然や景観を侵襲する可能性が少ない。こうした影響を最小限に抑えるため、適切な用地を注意深く選択することが重要だ（ドイツ連邦経済エネルギー省 BMWi 2014c: 10）。

このような基本的にはよい結果にもかかわらず、ドイツにおける二酸化炭素の排出量は、エネルギー転換の開始以来ほとんど減っていない。1990年以降は大幅な減少が見られたが、これほかなりの部分、特に大量の汚染ガスを排出していた旧東ドイツの工場閉鎖のおかげだった。公式なデータが1990年を引き合いに出して環境保護政策が成功したと言っても、それは偶発的な一時的の要因によるものに過ぎない。また2013年1億4,580万トンの温室効果ガスが再生可能エネルギーによって削減された、という主張も行き過ぎである。
この図は、温室効果ガスの排出量（1990–2012年）と削減目標を表しています。図の横軸は年（1990–2012年）で、縦軸はCO2排出量（単位100万t）を示しています。図の下には削減目標が示されており、2010年までに40%削減目標が設定されています。

データが示すように、ドイツの温室効果ガスの排出量は1990年から2012年にかけて大幅に減少しています。特に、2008–2012年には排出量が年々減少し、削減目標を達成していることが確認できます。これはドイツ政府の気候変動対策の効果を示しています。
ドイツにおけるエネルギー転換の発展

電力量を抑えるか、発電所を閉鎖するか決めるべきではない。環境保護団体WWFは、「最も古くてひとつ高い汚染をもたらす発電所」が少なくず排除されているだろうとして、これを「信頼できる気候保護の始まり」と呼んだ（『南ドイツ新聞』Süddeutsche Zeitung 2015）。だがこのスタートは雇用を危うくする。発電所だけでなく、供給会社や褐炭の採掘業界にも関わっている。統合ビーチ産業労働組合「ヴェルディ」のフランク・ブラジルスケ議長が言う20万人の雇用喪失というのは、さらに大変だだろう（「ハンブルガー・アーベントブラット」 Hamburger Abendblatt 2015）。しかし構造的に不利で財政的な困難を抱える地域では、雇用に影響が出る。ここで起きる構造的な変化は、避けることはできない。だがその変化に、余分な負担をかけないことが大切だ。

こうした決断は、原子力発電所からの脱却によってようやく難しくなった。原発を稼働させ続けば、かなり前から電気料金を引き下げてきた電力市場への豊富な供給が減少するだけではない。供給の確保さえ、難しくなるかもしれないのである。そして最終的には原発が閉鎖されれば、ほんのわずかしか温室効果ガスを排出しない電力生産者を排除してしまうことになる。替わりに再生可能エネルギーを使うことになるが、供給を確保するために石炭と褐炭の必要になる。だから送電網の整備は、石炭発電所の電力送電だけでなく、こうした再生エネルギーの発電所からの電力に役立つのである。もう1つの選択肢は天然ガスによる発電所で、排出する汚染物質の量がずっと少ないうえ、計画された送電網3本うち2本引きだけで済むかもしれない。だが、1度建設され稼働が始まったたら、天然ガス発電所は長年にわたって使用されるだろうから、再生可能エネルギーの普及はより難しくなる。それに天然ガスは褐炭による火力発電所よりも費用がかからないので、天然ガス発電所の事業者も財政支援を要求するようになるだろう。

この複雑で矛盾した状況にもかかわらず、天然ガス発電所は、おそらくこれから数年で再び重要な役割を果たす。石炭発電所に取って代わるだろうと。それが現在の世界的傾向だ。そう思ったのも理由の一つは、フラッキング（水圧破砕法）と呼ばれる方法である。ニューダークセン州では、この技術は1960年代から使用され、今日まで取り立てて言うほどの問題は起きていない。しかし現在では、頁岩などの密度の高い岩層に砂と化学薬品と混ぜた水を高圧で注入し、中に溜まっているガスを取り出すという、従来とは違った方法が用いられている。この化学物質の使用が危険だと警告し、この方法をドイツで使用する必要があるのか疑問に思う反対者もある（環境問題専門家委員会 – SRU 2013）。2015年3月下旬ドイツ政府は、3,000メートル未満の深さと、自然保護および水源供給地区でのフラッキングを禁止するものの、科学調査目的の掘削は認めるという法規を出すした。専門家による委員会がアセスメントを行い、具体的な場合についてはフラッキングを認める可能性があるということだ（「フラッキング・アルゲマイネ・ツァイトウング」 Frankfurter Allgemeine Zeitung 2015）。

フラッキングが危険で余計なものだと考える人たちは、こうした規制はフラッキングの使用を認識している以上、まだ甘く見えるだろう。一方、それほど危険性が高くなく制御可能だと判断する人たちは、これを妨害的法律だと考えている。双方の立場は平行線で、まして非常な多様な側面を考慮しなければならないため、一義的な判断に到達するのはおおらかに難しい。こうした中アメリカでは、フラッキングのおかげで天然ガスの価格が大幅に下がり、石炭による火力発電所が競争に勝ち残れなくなったため、二酸化炭素の排出が減った。世界的にも、フラッキングで採掘された天然ガスは石炭による火力発電所に取って代わりつつある。気候の保護を考えれば、即座に再生可能エネルギーへ転換するのが望ましい。だが石炭の世界的な重要性とそれに応じた火力発電所の拡充計画を考えると、フラッキングの世界的な重要性を評価した結果も、少なくとも再考に値するだろう。

結局、現代の石炭および褐炭による発電所も、橋渡しの技術としてエネルギー転換の役に立てるのだ。石炭や褐炭の割合は基本的にはできるだけ早く減らさなければならないのだから、こうした考え方が意外かもしれない。ドイツでは、この目標は達成できる。だがこうした化石燃料は、世界中で高く豊富に手に入ること、中国、インド、その他の国々では非常に重要な存在であることがある。こうした国々でもこれから石炭の利用が制限、あるいは削減される兆候は見られる。だが、まだ先は長い。だから石炭発電所を再装備あるいは新設して、より高い効率性と二酸化炭素の排出削減を実現するために、ドイツがすでに持っている知識を利用するのは有意義なことかもしれない。古いやり方と新しい技術の間にはかなりの違いがあるのだから、中国やインドの効率の高い石炭火力発電所は、世界規模での気候バランスを改善する可能性がある一特に二酸化炭素をうまく回収して保存することができるならば。
4 結論

どんな論文も最初にはまとめがあり、簡潔かつ明瞭に終わるものです。エネルギー転換に関しては、いずれも難しい。この計画はあまりに複雑で難題が多いので、これまでの章では問題の一部の側面しか取り上げられず、しかも大まかに説明することはしかなかった。有名な話にあるように、「恶魔は細部に宿っている」。そしてそれは、非常に多くの疑問点が集まって答えず予期せぬ結果が出るエネルギー転換には、特に当てはまる。だから、ここで紹介した発想を簡潔に要約するのは無理なのだと、また一貫的結果をまとめるのも不可能である。

エネルギー転換は、おそらくこれからも従来型支援を受け、世代も喜んでそれに伴う費用を負担するに違いない。ドイツ政府の目標も含めてと提示されている一2050年までに、再生可能エネルギーの割合をエネルギー消費量全体の60パーセントに、発電量全体の80パーセントにし、気候に有効なガスの排出もその分削減、一次エネルギーの需要を半分にするというものだ。これらの目標は実現ではないが、基本的には実現可能である。それぞれの事柄についてどの方法が望ましいのか、次にどの手段を取ったら良いのか、これが特に実現可能であるのかといった議論の余地はあるだろうが、1つ例を挙げよう。政府が目指しているように、本当に2020年までに100万両の電気自動車がドイツの道路を走るようになるだろうか？この数字を実現し、同時にガソリンをはじめとする化石エネルギーの使用を削減するなら、もっと地球も電力が必要になるだろう。そうすると政府が予測するような消費削減は、2050年までに可能なのかだろうか？

現在のところ、明白な答えはない。エネルギー転換はある意味でしのぎにされている分野で、さらに具体的な対策を取る必要があるのに、それぞれの段階も基本的な方向性も不確かなままである。パイオマスの効果的な貯蔵法と持続可能な生産法は、まもなく開発されるだろうか？太陽光と風力による発電所はさらに効率がよくなると稼働率も高まり、より多くの供給を確保できるようになるだろうか？断熱と省エネで、必要な効率が上げられるだろうか？価格と買取補償はこれからも広く行われるだろうか、それとも市場の要素がより安価な解決策をもたらすだろうか？分権化が進み、より供給に見合った需要を作り出すことができるのだろうか？

これらの疑問への答えは、ヨーロッパという枠組みの中でのみ見つけることができる。だから、ドイツのエネルギー転換を推進するために、まだ誕生したばかりの欧州エネルギー連合を動かすべき形に作り上げることは、社会民主主義の重要な関心事である。だがその後も当面、明白な答えを見つけるだろうか。不確実性はますます収まる、さまざまな対策を並行して取らなければ、その経験から最も適切なものを学ばなければならないろう。言い換えればエネルギー転換は、まだゴールが大まかにしか描かれていない、そして道順が絶えず変わっていく行程なのだ。

地球温暖化の危機は迫るなか、こうした不確実は前進しては、絶望的な気持ちになってしまう。抜本的な効果的な危急対策は、取れないものだろうか？おそらく理論的には可能だろうが、実際にこうした対策は難しい。4度下された断決が間違い何かによりも修正できなくなる危険もある。だからこの不確実性は共存せざるを得ないのが、それは手をこままして何もないとはわけが違った。まったたくの反対だ。われわれはエネルギー転換に伴う困難と矛盾を受け入れることによってのみ、不確実性に打ち勝つことができるのだ。目標に達するため、何度でも新しい試みを始めることによって、である。

社会民主党は、エネルギー転換における長年の使命を、引き続き果たしていく。勝者と敗者のバランスを取ること。妥協策を見つける。そして何より、この困難なプロジェクトに必要なコンセンサスを確保するために、さまざまな利害を考慮することである。それは簡単な仕事ではないし、常に感謝されるとも限らない。しかし、エネルギー転換という目標に到達するためには、必要不可欠な仕事なのである。

（翻訳：阿部寿美代）
参考文献


Bataille, Marc; Hösel, Ulrike 2014: Energieeffizienz und das Quotenmodell der Monopolkommission, DICE Ordnungspolitische Perspektiven 57, Düsseldorf.


Europäische Kommission 2015: MITTEILUNG DER KOMMISSION AN DAS EUROPÄISCHE PARLAMENT, DEN RAT, DEN EUROPÄISCHEN WIRTSCHAFTS-UND SOZIALausschuss, DEN AUSSCHUSS DER REGIONEN UND DIE EUROPÄISCHE INVESTITIONS BANK: Rahmenstrategie für eine krisenfeste Energieunion mit einer zukunftsorientierten Klimaschutzstrategie, 52015DC0080 Final, Brüssel.


Fraunhofer-Institut für Solare Energiesysteme (ISE) 2013a: Kohlenerosionserwer te an Zeiten niedriger Börsenstrompreise, Studie im Auftrag der Bundestagsfraktion Bündnis 90/Die Grünen, Freiburg.

ISE 2013b: Stromgestehungskosten Erneuerbare Energien, Freiburg.

ISE 2014: Kurzstudie zur historischen Entwicklung der EEG-Umlage, Freiburg.


Helm, Dieter 2012: The Carbon Crunch: How We’re Getting Climate Change Wrong – and How to Fix It, New Haven.

Hennicke, Peter; Fischedick, Manfred 2010: Erneuerbare Energien: Mit Energieeffizienz zur Energiewende, München.


Kemfert, Claudia 2013: Kempf um Strom: Mythen, Macht und Monopolie, Hamburg.


Lovins, Amory B. 1978: Sanfte Energie: Das Programm für die energie- und industriepolitische Umrüstung unserer Gesellschaft, Reinbek.


Monopolkommission Energie 2013: Wettbewerb in Zeiten der Energiewende, Sondergutachten 65, Köln.

Popp, Manfred 2013: Deutschlands Energiezukunft. Kann die Energiewende gelingen?, Weinheim.

Quaschning, Volker 2013a: Erneuerbare Energien und Klimaschutz, München.

Quaschning, Volker 2013b: Regenerative Energiesysteme, München.


Radtke, Jörg; Hennig, Bettina (Hrsg.) 2013: Die deutsche „Energiewende“ nach Fukushima: Der wissenschaftliche Diskurs zwischen Atomausstieg und Wachstumsdebatte, Marburg.


Siemann, Wolfram (Hrsg.) 2003: Umweltgeschichte: Themen und Perspektiven, München


UBA 2010: Energieziel 2050: 100% Strom aus erneuerbarer Energie, Dessau.


Japan is an important partner for Germany in Asia. The two countries are key actors in the international arena and face similar political, social, economic and environmental challenges.

The FES Tokyo Office promotes Japanese-German dialogue, encourages multilateral discussions involving participants from East Asia, Europe and North America and helps to maintain and expand Euro-Japanese networks in politics, civil society and academia. The activities of the Tokyo office involve a broad spectrum of representatives from politics and civil society and it seeks to encourage academic exchange by organizing symposia and workshops.

Our activities focus primarily on security, climate and energy policy, but also extend to societal issues such as demographic trends in Japan and Germany and the high budget deficits in the industrialized world, including related economic issues such as recent developments in Japan’s labor market and questions of consumer protection. Debates about historical legacies and history education in Europe and East Asia are also part of our program...

Friedrich-Ebert-Stiftung
7-5-56 Akasaka
Minato-ku
Tokyo, 107-0052
Japan
Tel: (03)-6277-7551
Fax: (03) 3-3588-6035
E-Mail: office@fes-japan.org
www.fes-japan.org

The views expressed in this publication are not necessarily those of the Friedrich-Ebert-Stiftung or of the organization for which the author works.

This publication is printed on paper from sustainable forestry.