Lis	st of Illustrations	хi
Pr	eface	xv
Ac	Acknowledgements	
Int	Introduction	
1.	The Need to Capture Carbon	5
	What is Carbon Capture?	5
	Climate Change is Real, and a Threat	6
	Carbon Fuels are Abundant	16
	Carbon Fuels Will Continue to be Used	19
	Carbon Capture is Feasible Today	24
	Carbon Capture is not only about Fossil Fuel Electricity	26
	No Single Solution to Climate Change is Perfect or Sufficient	27
	Capture can Tackle Carbon Dioxide Already in the	
	Atmosphere	41
	A Portfolio of Solutions is Required	42
	Risks to CCS	44
2.	Capture Technology	47
	Capture Techniques	47
	Power Station Capture	48
	Post-Combustion	52
	Pre-Combustion	57
	Oxyfuel	63
	'Second Generation' Techniques	65
	Comparison of Capture Options	69
	Industrial Capture	73
	Environmental Impacts	78

	Air Capture	80
	Decarbonising Transport	83
	Conclusion	87
3.	Transport and Storage	93
	Transport	94
	Practical Uses	96
	Storage Sites	98
	Enhanced Oil Recovery	101
	Enhanced Gas Recovery	106
	Enhanced CBM	107
	Depleted Oil- and Gasfields	109
	Saline Aquifers	110
	Other Underground Storage Options	115
	Underground Coal Gasification	119
	Ocean Storage	120
	Mineralisation	121
	Storage Capacity	125
	Probability of Leakage	133
	Hazards of Leakage	144
	Monitoring and Remediation	148
	Conclusion	154
4.	Bio-sequestration	155
	Biomass	160
	Forestation	162
	Land-Use and Soils	168
	Carbon Sequestration and Biochar	170
	Ocean Fertilisation and Other Geo-Engineering	174
5.	Scale, Costs and Economics	179
	CCS's Role in Emission Reductions	179
	Scale of a Global Carbon Capture Industry	184
	The Cost of CCS	187
	Capture Costs: Principles	190
	Capture Costs: Current Systems	193
	Capture Costs: Future Systems	196
	Capture Costs: Potential for Cost Reductions	199
	Transport Costs	201
	Storage Costs	202
	Total Cost	206

	Air Capture	209
	Capacity and Cost of Biological and Land-Use Sequestration	213
	Costs at the Macroeconomic Level	218
	Carbon Pricing for Capture to Take Off	218
	Competitiveness Against Other Low-Carbon Approaches	221
	Long-Term Costs and Scale	224
	Conclusion	227
6.	Policy	229
	Carbon Abatement Policies	230
	The Need for Government Action	235
	Short Term: Need to Start Soon	238
	Near-Term Policies	241
	The Commercialisation Phase	245
	Longer Term: Paying the Cost of Carbon	249
	Bio-sequestration Funding	253
	Legal Framework	257
	International Perspectives	263
	Current Projects	267
	Europe	267
	USA	271
	Canada	273
	Asia	274
	Australia	275
	Latin America	276
	Middle East and North Africa	276
	Business Opportunities	277
	The Human Angle	281
	Long Term	289
7.	Risks	295
	Technical	296
	Costs	296
	Environment	299
	Safety	300
	Public Acceptability	300
	Institutional	303
	Risks to Biological Sequestration	307
	Combining the Risks	310
8.	Conclusions	313

Appendix: Further Details	321
Chapter 1: The Need to Capture Carbon	321
Chapter 2: Capture Technology	323
Chapter 3: Transport and Storage	326
Chapter 5: Scale, Costs and Economics	329
Chapter 6: Policy	341
Notes	343
Bibliography	379
Glossary	417
Index	429